Autoregressive Processes Basic Concepts

In a simple linear regression model, the predicted dependent variable is modeled as a linear function of the independent variable plus a random error term.
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A first-order autoregressive process, denoted AR(1), takes the form
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Thinking of the subscripts i as representing time, we see that the value of y at time i+1 is a linear function of y at time i plus a fixed constant and a random error term. Similar to the ordinary linear regression model, we assume that the error terms are independently distributed based on a normal distribution with zero mean and a constant variance σ2 and that the error terms are independent of the y values. Thus
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Similarly, a second-order autoregressive process, denoted AR(2), takes the form
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and a p-order autoregressive process, AR(p), takes the form

[image: image052z]

Property 1: The mean of the yi in a stationary AR(p) process is

[image: Mean of AR(p) process]

Proof: 

Since the process is stationary, for any k, E[yi] = E[yi-k], a value which we will denote μ. Since E[εi] = 0,  E[φ0] = φ0 and
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it follows that
[image: Mean of AR(p) process]

Solving for μ yields the desired result.

Property 2: The variance of the yi in a stationary AR(1) process is
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Proof: 

Since the yi and εi are independent, by basic properties of variance, it follows that
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Since the process is stationary, yi = yi-1, and so
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Solving for var(yi) yields the desired result.

Property 3: The lag h autocorrelation in a stationary AR(1) process is
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Proof: 

First note that for any constant a, cov(a+x, a+y) = cov(x,y). Thus, cov(yi,yj) has the same value even if we assume that φ0 = 0, and similarly for var(yi) = cov(yi,yi). Thus, it suffices to prove the property when φ0 = 0. In this case, by Property 1, μ = 0, and so cov(yi,yj) = E[yiyj].
Thus
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since by the stationary property, E[yi-1,yi-k] = γi-1. Now, by induction on k, it is easy to see that 
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Hence
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Property 4 : For any stationary AR(p) process. The autocovariance at lag k > 0 can be calculated as
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Similarly the autocorrelation at lag k > 0 can be calculated as
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Here we assume that γh = γ-h and ρh = ρ-h if h < 0, and ρ0 = 1.
These are known as the Yule-Walker equations.
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