
 C for Statistics – ratulchakraborty@gmail.com

1

C for Statistics

Computer Programming

Computer programming is a process of formulating a computing problem to executable

computer programs. Programming involves activities such as analysis, generating algorithms

and implementation of algorithms in a target programming language.

Programming Language

A ‘Programming Language’ is a formal language that specifies a set of instructions that can

be used to produce various kinds of output. Programming languages generally consist of

instructions for a computer. Programming languages can be used to create programs that

implement specific algorithms.

Basically, programming languages can be divided into the following two categories

according to how the computer understands them.

1. Low-level language

2. High-level language

Low-level language

Low-level computer languages are either machine languages or languages very close them. A

computer cannot understand instructions given to it in high-level languages or in English. It

can only understand and execute instructions given in the form of machine language i.e.

binary (0 and 1). There are two types of low-level languages:

1. Machine Language

2. Assembly Language

Machine Language

Machine language is the lowest and most elementary level of programming language.

Machine language is basically the only language that a computer can understand. In fact, a

manufacturer designs a computer to obey just one language, its machine language, which is

represented inside the computer by a string of binary digits (bits) 0 and 1. The symbol 0

stands for the absence of an electric pulse and the 1 stands for the presence of an electric

pulse. Since a computer is capable of recognizing electric signals, it understands machine

language.

Advantages Disadvantages

1. Machine language makes fast and

efficient use of the computer.

1. All operation codes have to be

remembered

2. It requires no translator to translate the

code. It is directly understood by the

computer.

2. All memory addresses have to be

remembered.

3. It is hard to find errors in a program

written in the machine language.

 C for Statistics – ratulchakraborty@gmail.com

2

Assembly Language

Assembly language is a modified version of machine language in which instructions are

given in the form of alphanumeric symbols like ADD, SUM, MOV etc. instead of 0’s and l’s.

Because of this feature, assembly language is also known as ‘Symbolic Programming

Language.' This language is also very difficult and needs a lot of practice to master it because

there is only a little English support in this language. The instructions of the assembly

language are converted to machine codes by a language translator (known as ‘Assembler’)

and then they are executed by the computer.

Advantages Disadvantages

1. Assembly language is easier to understand

and use as compared to machine language.

1. Like machine language, it is also machine

dependent/specific.

2. It is easy to locate and correct errors.

2. Since it is machine dependent, the

programmer also needs to understand the

hardware.

3. It is easy to modify.

 High-Level Language

High-level computer languages use formats that are similar to English. The purpose of

developing high-level languages was to enable people to write programs easily in their own

native language environment (English). High-level languages are basically symbolic

languages that use English words and mathematical symbols rather than alphanumeric

symbols. Each instruction in the high-level language is translated into many machine

language instructions by a high-level language translator (‘Compiler’ or ‘Interpreter’).

Advantages Disadvantages

1. High-level languages are user-friendly.

1. A high-level language has to be translated

into the machine language by a translator,

which takes up time.

2. They are similar to English and use

English vocabulary and well-known

symbols.

2. The object code generated by a translator

might be inefficient compared to an

equivalent assembly language program.

3. They are easier to learn.

4. They are easier to maintain.

5. They are problem-oriented rather than

machine based.

6. A program written in a high-level

language can be translated into many

machine languages and can run on any

computer for which there exists an

appropriate Compiler / Interpreter.

Types of High-Level Languages

Many High-level computer languages have been developed for achieving a variety of

different tasks. Some are fairly specialized, and others are quite general. These languages,

categorized according to their use, are:

 C for Statistics – ratulchakraborty@gmail.com

3

1. Algebraic Formula-Type Processing: These languages are oriented towards the

computational procedures for solving mathematical and statistical problems. Some

examples include:

 BASIC (Full name is “Beginners All Purpose Symbolic Instruction Code”)

 FORTRAN (Full name is “Formula Translation”)

 ALGOL (Full name is “Algorithmic Language”)

 APL (Full name is “A Programming Language”)

2. Business Data Processing: These languages emphasize their capabilities for

maintaining data processing procedures and files handling problems. Examples are:

 COBOL (Full name is “Common Business Oriented Language”)

 RPG (Full name is “Report Program Generator”)

3. Multipurpose Language: These languages are useful for algebraic procedures, data

processing, string processing and web development. Examples are:

 C

 C++

 Java

 JavaScript (It is the main client-side web development language for all modern

web-browsers like Google Chrome, Mozilla Firefox, Internet Explorer, Opera,

etc.)

 PERL (Full name is “Practical Extraction and Reporting Language”. Suitable

for server-side web development and string parsing.)

 Pascal (After the name of French philosopher and mathematician Blaise

Pascal).

 PHP (Full name is “Personal Home Page”. Suitable for server-side web

development.)

 Python (Python's name is derived from the British comedy group “Monty

Python”, whom Python creator Guido van Rossum enjoyed while developing

the language.)

 Ruby (This name is taken from the name of the gemstone ruby)

Compiler

Compiler is a computer program that translates code written in a high-level programming

language (like C, C++, JavaScript or Java) into low-level code directly executable by the

computer or another program such as a virtual machine.

For example, the Java compiler converts Java code to Java Bytecode executable by the JVM

(Java Virtual Machine). Other examples are V8, the JavaScript engine from Google Chrome

which converts JavaScript code to machine code or GCC which can convert code written in

programming languages C and C++ to native machine code.

Interpreter

An interpreter is a special kind of program for the conversion of a high-level program

statement into machine code just before the program statement is to be executed. During each

conversion, the interpreter converts the source code into an intermediate code before

processing it into the machine for the generation of machine code. Each part of the code is

 C for Statistics – ratulchakraborty@gmail.com

4

interpreted line by line and then executed separately in a sequential manner. So, if an error is

found in any part of the code, the interpreter will stop the interpretation without converting

the next set of codes.

As interpreters check the source code line by line, translation and execution occurs

immediately one statement at a time. As a result, they are 2 to 10 times slower than

compilers. But this very disadvantage makes interpreters easier to user, especially for

beginners; errors once found are immediately displayed and corrected by the user, before the

program is executed.

C Language

C Programming is an ANSI/ISO standard and powerful programming language for

developing real time applications. C programming language was invented by Dennis Ritchie

at the Bell Laboratories in 1972. It was invented for implementing UNIX operating system. C

is most widely used programming language even today. C programming is considered as the

base for other programming languages, that is why it is known as mother language.

It can be defined by following ways:

1. C as a mother language: C language is considered as the mother language of all the

modern languages because most of the compilers, Java virtual machines, Kernel of

operating systems, etc. are written in C language and most of languages follows C

syntax e.g. C++, Java etc. It provides the core concepts like array, functions, file

handling etc. that is being used in many languages like C++, Java, C# etc.

2. C as a system programming language: A system programming language is used to

create system softwares. C language is a system programming language because it can

be used to do low level programming (e.g. Driver and Kernel). It is generally used to

create hardware devices, OS, Drivers, Kernels etc. For example, Linux Kernel is

written in C. It can't be used directly in internet programming like Java, .net, PHP,

PERL, etc.

3. C as a procedural language: A procedure is known as function, method, routine,

subroutine etc. A procedural language specifies a series of steps or procedures for the

program to solve the problem. A procedural language breaks the program into

functions, data structures etc. C is a procedural language. In C, variables and function

prototypes must be declared before being used.

4. C as a structured programming language: A structured programming language is a

subset of procedural language. Structure means to break a program into parts or

blocks so that it may be easy to understand. In C language, we break the program into

parts using functions. It makes the program easier to understand and modify.

5. C as a mid-level programming language: C is considered as a middle-level

language because it supports the feature of both low-level and high-level language. C

language program is converted into assembly code, supports pointer arithmetic

(features of low-level), but it is machine independent (feature of high-level).

 C for Statistics – ratulchakraborty@gmail.com

5

The History of the C Language

The C programming language was devised in the early 1970s by Dennis M. Ritchie, an

employee from Bell Labs.

In the 1960s Ritchie worked, with several other employees of Bell Labs, on a project called

Multics. The goal of the project was to develop an operating system for a large computer that

could be used by a thousand users. In 1969 Bell Labs withdrew the project, because the

project could not produce an economically useful system. So the employees of Bell Labs had

to search for another project to work on (mainly Dennis M. Ritchie and Ken Thompson). At

that time a complete Operating System known as UNIX was born. The whole system was

written in assembly code. Besides Assembler and Fortran, UNIX also had an interpreter for

the programming language B which was developed in 1969-70 by Ken Thompson based on

BCPL (Basic Combined Programming Language).

In the early days computer code was written in assembly code. To perform a specific task,

one had to write many pages of code. A high-level language like B made it possible to write

the same task in just a few lines of code. So the language B was used for further development

of the UNIX system because of its efficient and faster coding techniques.

Ken Thompson and Dennis Ritchie

A drawback of the B language was the absence of data-types. The lack of this thing formed

the reason for Dennis M. Ritchie to develop the programming language C. So in 1971-73

Dennis M. Ritchie turned the B language into the C language, keeping most of the language B

syntax while adding data-types and many other changes. The C language had a powerful mix

of high-level functionality and the detailed features required to program an Operating

System. Therefore many of the UNIX components were eventually rewritten in C (the UNIX

kernel itself was rewritten in 1973).

The programming language C was written down, by Kernighan and Ritchie, in their classic

book “The C Programming Language, 1st edition”. For years this book was the standard on

the language C. In 1983 a committee was formed by the American National Standards

Institute (ANSI) to develop a modern definition for the programming language C. In 1988

they delivered the final standard definition ANSI C. (The standard was based on the book

from “The C Programming Language, 1st edition”). The standard ANSI C made little

changes on the original design of the C language. (They had to make sure that old programs

still worked with the new standard). Later on, the ANSI C standard was adopted by the

 C for Statistics – ratulchakraborty@gmail.com

6

International Standards Organization (ISO). The correct term should therefore be ISO C, but

everybody still calls it ANSI C.

C Programs & Compilers

A C program can vary from 3 lines to millions of lines and it should be written into one or

more text files with extension ".c"; for example, hello.c. We can use any text editor (like

Notepad, gedit, vi, etc.) to write our C program ie. “C source code” into a file.

The source code written in text file is the human readable source for our program. It needs to

be "compiled" into machine language so that our CPU can actually execute the program as

per the instructions given. A compiler compiles the source codes into final executable

programs. A list of most frequently used C compilers are given below:

Name Author Supporting OS License type

GCC C/C++ GNU Project
MS Windows, Unix,

Linux, Solaries, Mac
GPL

(Borland) Turbo

C/C++

Embarcadero

Technologies
MS Windows Proprietary

Visual C++ Microsoft MS Windows Freeware

Digital Mars C/C++ Digital Mars MS Windows Proprietary

Intel C/C++

Compiler
Intel

MS Windows, Linux,

Mac

Proprietary

(Freeware for most

non-commercial

applications)

Xcode Apple Mac Freeware

C Program Structure

A C program basically consists of the following parts:

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello, World":

#include <stdio.h>

int main()
{

 /* my first program in C */

printf("Hello, World");

 return 0;
}

 C for Statistics – ratulchakraborty@gmail.com

7

Let us take a look at the various parts of the above program:

 The first line of the program #include <stdio.h> is a preprocessor command,

which tells a C compiler to include stdio.h file before going to actual compilation.

 The next line int main() is the main function where the program execution begins.

 The next line /*...*/ will be ignored by the compiler and it has been put to add

additional comments in the program. So such lines are called comments in the

program.

 The next line printf(...) is another function available in C which causes the

message "Hello, World" to be displayed on the screen.

 The next line return 0 terminates the main() function and returns the value 0.

Basic Syntax

Almost every program we write on a computer has different type of format. That format is

called as Syntax. A syntax is a set of rules, principles, and processes that govern the structure

of a program in any given computer language.

Now let us look at the basic syntax of c programming.

 Tokens: A smallest individual unit in C program is known as C Token. Tokens are

either keywords, identifiers, constants, variables or any symbol which has some

meaning in C language. A C program can also be called as a collection of various

tokens. Let us consider the following statement:

printf("Hello, World");

 The tokens in this statement are printf, (, "Hello,World",) and ;

 So C tokens are basically the building blocks of a C program.

 Semicolons: In a C program, the semicolon is used to mark the end of a statement and

beginning of another statement. Absence of semicolon at the end of any statement will

mislead the compiler to think that this statement is not yet finished and it will add the

next consecutive statement after it, which may lead to compilation (syntax) error.

 Comments: Comments are plain simple text in C programs that are not compiled by

the compiler. We write comments for better understanding of the program. Though

writing comments is not compulsory, but it is recommended to make our program

more descriptive. It makes the code more readable.

There are two ways in which we can write comments.

1. Using //: This is used to write a single line comment.

2. Using /* */: The statements enclosed within /* and */, are used to write

multiline comments.

It should be noted that we cannot have comments within comments and they do not

occur within a string.

 C for Statistics – ratulchakraborty@gmail.com

8

 Identifiers: In C language, identifiers are the names given to variables, constants,

functions and user-define data. These identifiers are defined against a set of rules

given below.

1. An Identifier can only have alphanumeric characters (a-z , A-Z , 0-9) and

underscore (_).

2. The first character of an identifier can only contain alphabet (a-z , A-Z) or

underscore (_).

3. Identifiers are also case sensitive in C. For example ‘mean’ and ‘Mean’ are

two different identifiers in C.

4. Keywords are not allowed to be used as identifiers.

5. No special characters, such as semicolon, whitespaces, slash, comma, @, $, #,

%, etc. are permitted to be used as identifier.

 Keywords: Keywords are preserved words that have special meaning in C language.

The meaning of C language keywords has already been described to the C compiler.

These meaning cannot be changed. Thus, keywords cannot be used as variable names

because that would try to change the existing meaning of the keyword, which is not

allowed. There are total 32 keywords in C language.

auto break case const char continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned volatile void while

Data Types in C

In C programming, variables and functions should be declared before it can be used. Each

variable and function in C has an associated data type. Data types simply refer to the type and

size of data associated with variables and functions. Different data types have different ranges

upto which they can store numbers. These ranges may vary from compiler to compiler.

C language supports three different types of data types:

1. Primary data types: These are fundamental data types in C.

 C for Statistics – ratulchakraborty@gmail.com

9

Details of primary data types along with their ranges, memory requirement and format

specifiers in a 32 bit gcc compiler are given below:

Data Type
Memory
(in bytes)

Range
Format

Specifier
Description

char 1 -128 to 127 %c

The most basic data
type in C. It stores a
single character and
requires a single byte of
memory in almost all
compilers.

unsigned char 1 0 to 255 %c

short int 2 -32,768 to 32,767 %hd

unsigned short
int

2 0 to 65,535 %hu

int 4
-2,147,483,648 to

2,147,483,647
ie. -(2^31) to (2^31)-1

%d
As the name suggests,
an int variable is used to
store an integer.

unsigned int 4 0 to 4,294,967,295 %u

long int 4
-2,147,483,648 to

2,147,483,647
ie. -(2^31) to (2^31)-1

%ld

unsigned long
int

4
0 to 4,294,967,295

ie. 0 to (2^32)-1
%lu

long long int 8

−9,223,372,036,854,775,807
to

9,223,372,036,854,775,807
ie. -(2^63) to (2^63)-1

%lld

unsigned long
long int

8
0 to

18,446,744,073,709,551,615
ie. 0 to (2^64)-1

%llu

float 4 1.18E-38 to 3.4E+38
%f, %g,
%G, %e,

%E

It is used to store
decimal numbers with 6
digits of precision.

double 8 2.23E-308 to 1.79E+308
%lf, %lg,
%lG, %le,

%lE

It is used to store
decimal numbers with
15 digits of precision.

long double 12 3.4E-4932 to 1.1E+4932
%Lf, %Lg,
%LG, %Le,

%LE

It is used to store
decimal numbers with
18 digits of precision.

void

The void type specifies
that no value is
available. This can be
used in functions and
pointers.

 C for Statistics – ratulchakraborty@gmail.com

10

2. Derived data types: Data types that are derived from fundamental data types are

called derived data types. Derived data types don't create a new data type but,instead

they add some functionality to the basic data types. In C, two derived data type are :

Array & Pointer.

 Array: An array is a collection of variables of same type. They are stored in

contagious memory allocation. For example: int a[10]; float b[20];

etc.

 Pointer: A pointer is a special variable that holds a memory address (location

in memory) of another variable. For example: int i = 10; int *j; j =

&i;

3. User defined data types: The user defined data types enable a programmer to invent

his own data types and define what values it can take on. C supports two types of user

defined data types:

 Structures: A structure is a collection of variables, constants and arrays of

various data types. The main difference between an array and a structure is

that the members of a structure are of different types. This offers excellent

flexibility when working with structures. Now, consider the following

example:

#include <stdio.h>

typedef struct student_records
{
 char *name;
 int age;
 float weight;
 float height;
} student;

int main()
{

student x;

 x.name = "Mr. X";
 x.age = 22;
 x.weight = 56.6;
 x.height = 5.4;

 return 0;
}

Here we define a structure named student with four variables name, age,

weight & height. In the main function we create a variable x of type student

and assign values to its all member variables.

 Unions: A union is a special data type available in C that allows storing

different data types in the same memory location. We can define a union with

 C for Statistics – ratulchakraborty@gmail.com

11

many members, but only one member can contain a value at any given time.

Unions provide an efficient way of using the same memory location for

multiple-purpose. The following example shows how to use unions in a

program.

#include <stdio.h>
#include <string.h>

union Data {
 int i;
 float f;
 char str[20];
};

int main()
{
 union Data data;

 data.i = 10;

 printf("Memory size occupied by data : %d\n", sizeof(data));

 printf("\ndata.i (before assigning data.f) : %d\n", data.i);

 data.f = 220.5;

 printf("\ndata.i (after assigning data.f): %d\n", data.i);
 printf("data.f (before assigning data.str): %f\n", data.f);

 /* Assigning the string "C Programming" to data.str */
 strcpy(data.str, "C Programming");

 printf("\ndata.i (after assigning data.str): %d\n", data.i);
 printf("data.f (after assigning data.str): %f\n", data.f);
 printf("data.str : %s\n", data.str);

 return 0;
}

 Output

Memory size occupied by data : 20

data.i (before assigning data.f) : 10

data.i (after assigning data.f): 1130135552
data.f (before assigning data.str): 220.500000

data.i (after assigning data.str): 1917853763
data.f (after assigning data.str): 4122360580327794900000000000000.000000
data.str : C Programming

Here, we can see that the values of data.i got corrupted after assigning values

to data.f. Similarly both the values of data.i and data.f got corrupted after the

assignment of string “C Programming” to data.str.

 C for Statistics – ratulchakraborty@gmail.com

12

 Difference between Structure and Union in C

 Structure Union

Keyword struct defines a structure. Keyword union defines a union.

When a variable is associated with a

structure, the compiler allocates the

memory for each member. The size

of structure is greater than or equal to

the sum of sizes of its members.

When a variable is associated with a union,

the compiler allocates the memory by

considering the size of the largest memory.

So, size of union is equal to size of largest

member.

Each member within a structure is

assigned unique storage area of

location.

Memory allocated is shared by individual

members of union.

Altering the value of member will

not affect other members of the

structure.

Altering the value of any of the member will

alter other member values.

All member can be accessed at a

time.
Only one member can be accessed at a time.

Qualifiers in C

Qualifiers in C alters the meaning of base data types to yield a new data type. Different types

of qualifiers are as follows:

 Size qualifiers: Size qualifiers alter the size of a basic data type. There are two size

qualifiers, long and short. For example:

1. long double x; Here size of double is 8 bytes. However, when long

keyword is used, that variable becomes 12 bytes.

2. short int x; Here size of int is 4 bytes. However, when short keyword is

used, that variable becomes 2 bytes.

However we can’t use these qualifiers with all data types.

 Sign qualifiers: Integers and floating point variables can hold both negative and

positive values. However, if a variable needs to hold positive value only, unsigned

qualifier is used. For example: unsigned int x; There is another qualifier

signed which can hold both negative and positive value. However, it is not

necessary to define variable signed since a variable is signed by default. It is

important to note that, sign qualifiers can be applied to int and char types only.

 Constant qualifiers: A variable can be declared as a constant. To do so const

keyword is used. For example: const int x = 20; The value of cost cannot be

changed in the program.

 Volatile qualifiers: A variable should be declared volatile whenever its value can

be changed by some external sources outside the program.

 C for Statistics – ratulchakraborty@gmail.com

13

 Static qualifiers: If we qualify a variable with the static keyword, the compiler

will generate instructions so as to create the variable in the memory as soon as the

execution of the process begins. Even before the execution control enters the entry

point that is the main function. All static variables are also available / accessible

from any location of the program throughout the lifecycle of the process.

Operators in C

An operator is a symbol which operates on a value or a variable. For example: + is an

operator to perform addition. C programming has wide range of operators to perform various

operations. For better understanding of operators, these operators can be classified as:

 Arithmetic Operators: An arithmetic operator performs mathematical operations

such as addition, subtraction and multiplication on numerical values (constants and

variables).

Operator Meaning of Operator

+ Addition or unary plus

- Subtraction or unary minus

* Multiplication

/ Division

% Remainder after division

 Increment and decrement operators: C programming has two operators increment

++ and decrement -- to change the value of an operand (constant or variable) by 1. ++

increases the value by 1 whereas -- decreases the value by 1. These two operators are

unary operators, meaning they only operate on a single operand.

Example

#include <stdio.h>

int main()
{
 int a = 10, b = 20;
 float c = 3.6, d = 6.8;

 printf("++a = %d", ++a); // Pre-increment of a
 printf("\nb++ = %d", b++); // Post-increment of b

// Value of b after Post-increment of b
 printf("\nb = %d", b);

 printf("\n++c = %g", ++c); // Pre-increment of c
 printf("\nd++ = %g", d++); // Post-increment of d

// Value of d after Post-increment of d
 printf("\nd = %g", d);

 return 0;
}

 C for Statistics – ratulchakraborty@gmail.com

14

 Output

++a = 11
b++ = 20
b = 21
++c = 4.6
d++ = 6.8
d = 7.8

 Assignment Operators: An assignment operator is used for assigning a value to a

variable. The most common assignment operator is =

Operator Usage Same as

= a = b a = b

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

 Relational Operators: A relational operator checks the relationship between two

operands. If the relation is true, it returns 1; if the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5 == 3 returns 0

> Greater than 5 > 3 returns 1

< Less than 5 < 3 returns 0

!= Not equal to 5 != 3 returns 1

>= Greater than or equal to 5 >= 3 returns 1

<= Less than or equal to 5 <= 3 return 0

 Logical Operators: An expression containing logical operator returns either 0 or 1

depending upon whether expression results true or false. Logical operators are

commonly used in decision making in C programming. Following table shows all the

logical operators supported by C language.

 Operator Meaning of Operator Example

&&
Logial AND. True only if all

operands are true

If c = 5 and d = 2 then,

expression ((c == 5) && (d >

5)) equals to 0.

||
Logical OR. True only if

either one operand is true

If c = 5 and d = 2 then,

expression ((c == 5) || (d >

5)) equals to 1.

!
Logical NOT. True only if

the operand is 0

If c = 5 then, expression ! (c ==

5) equals to 0.

 C for Statistics – ratulchakraborty@gmail.com

15

 Bitwise Operators: During computation, mathematical operations like: addition,

subtraction, addition and division are converted to bit-level which makes processing

faster and saves power. Bitwise operators are used in C programming to perform bit-

level operations.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

 Other Operators

Operator Meaning of Operator Example

,
Comma operators are used to link

related expressions together.
int a, c = 5, d;

sizeof
The sizeof is an unary operator which

returns the size of a variable or data type
sizeof(float) returns 4

& Returns the address of an variable &x returns address of the variable x

* Pointer to a variable *x will be pointer to a variable x

? :

It is actually the if condition that we use

in C language decision making, but

using conditional operator, we turn the if

condition statement into a short and

simple operator.

If x = 10 then x > 9 ? 1 : 0

returns 1

Decision making in C

Decision making is about deciding the order of execution of statements based on certain

conditions or repeat a group of statements until certain specified conditions are met. C

language handles decision-making by supporting the following statements:

 if statement: The if statement may be implemented in different forms depending on

the complexity of conditions to be tested. The different forms are:

1. Simple if statement: The general form of a simple if statement is

if(expression)

{

 statement-inside;

}

statement-outside;

If the expression returns true, then the statement-inside will be executed,

otherwise statement-inside will be skipped and only the statement-outside will

be executed.

 C for Statistics – ratulchakraborty@gmail.com

16

2. if...else statement: The general form of a simple if...else statement

is

if(expression)

{

 statement-block-1;

}

else

{

 statement-block-2;

}

If the expression is true, the statement-block-1 will be executed, else

statement-block-1 will be skipped and statement-block-2 will be executed.

3. Nested if....else statement: The general form of a nested if...else

statement is

if(expression)

{

 if(expression1)

 {

 statement-block-1;

 }

 else

 {

 statement-block-2;

 }

}

else

{

 statement-block-3;

}

If expression is false then statement-block-3 will be executed, otherwise the

execution continues and enters inside the first if to perform the check for the

next if block, where if expression-1 is true the statement-block-1 will be

executed otherwise statement-block-2 will be executed.

4. else- if ladder: The general form of else-if ladder is

if(expression1)

{

 statement-block-1;

}

 C for Statistics – ratulchakraborty@gmail.com

17

else if(expression2)

{

 statement-block-2;

}

else if(expression3)

{

 statement-block-3;

}

else

 default-statement;

The expressions will be tested from the top (of the ladder) to downwards. As

soon as a true condition is found, the statement associated with it is executed.

 switch statement: switch statement is a control statement that allows us to choose

only one choice among the many given choices. When we want to solve multiple

option type problems, for example: Menu like program, where one value is associated

with each option and we need to choose only one at a time, then, switch statement is

used. The general form of switch statement is

switch(expression)

{

 case value-1:

 block-1;

 break;

 case value-2:

 block-2;

 break;

 case value-3:

 block-3;

 break;

 case value-4:

 block-4;

 break;

 default:

 default-block;

 break;

}

The expression in switch evaluates to return an integral value, which is then

compared to the values present in different cases. It executes that block of code which

matches the case value. If there is no match, then default block will be executed (if

present).

 C for Statistics – ratulchakraborty@gmail.com

18

 goto statement: A goto statement in C programming provides an unconditional

jump from the goto to a labeled statement in the same function. The syntax for a

goto statement in C is as follows:

goto label;

..

.

Labe_l: statement;

..

.

Here labe_l can be any plain text except C keyword and it can be set anywhere in the

C program above or below to goto statement.

NOTE - Use of goto statement is highly discouraged in any programming language

because it makes difficult to trace the control flow of a program, making the program

hard to understand and hard to modify. Any program that uses a goto can be

rewritten to avoid them.

Loops in C

We may encounter situations, when a block of code needs to be executed several number of

times. In C language a loop statement allows us to execute a statement or a group of

statements multiple times. Given below is the general form of a loop statement in C.

As per the above diagram, if the Test Condition is true, then the loop is executed, and if it is

false then the execution breaks out of the loop. After the loop is successfully executed the

 C for Statistics – ratulchakraborty@gmail.com

19

execution again starts from the Loop entry and again checks for the Test condition, and this

keeps on repeating.

Different types of Loops in C language are as follows:

 for loop: for loop executes a sequence of statements multiple times and abbreviates

the code. The syntax of for loop is:

for(initializationStatement; testExpression; updateStatement)

{

 // codes

}

Here the initializationStatement is executed only once. Then, the testExpression is

evaluated. If the test testExpression is false, for loop is terminated. But if the

testExpression is true, codes inside the body of for loop is executed and the

updateStatement is updated. This process repeats until the testExpression is false.

A for loop is commonly used when the number of iterations is known. However we

can terminate a for loop with break statement for some terminating condition.

 C for Statistics – ratulchakraborty@gmail.com

20

 while loop: while loop repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop body. The syntax of a

while loop is:

while(testExpression)

{

 //codes

}

Here the while loop evaluates the testExpression. If the testExpression is true, codes

inside the body of while loop are exectued. The testExpression is evaluated again.

The process goes on until the testExpression is false. When the testExpression is false,

the while loop is terminated.

 do..while loop: do..while loop repeats a statement or group of statements while

a given condition is true. It tests the condition at the end of the loop body. The syntax

of a do..while loop is:

do

{

 // codes

}

while(testExpression);

 C for Statistics – ratulchakraborty@gmail.com

21

Here the code block (loop body) inside the braces is executed once. Then, the

testExpression is evaluated. If the test expression is true, the loop body is executed

again. This process goes on until the evaluated testExpression is false. When the test

expression is false, the do...while loop is terminated.

Functions in C

A function is a block of code that performs a particular task. There are many situations where

we might need to write same line of code for more than once in a program. This may lead to

unnecessary repetition of code, bugs and even becomes boring for the programmer. So, C

language provides an approach in which we can declare and define a group of statements

once in the form of a function and it can be called and used whenever required. Every C

program has at least one function, which is main().

Benefits of Using Functions

1. It provides modularity to our program's structure.

2. It makes our code reusable. We just have to call the function by its name to use it,

wherever required.

3. In case of large programs with thousands of code lines, debugging and editing

becomes easier if we use functions.

4. It makes the program more readable and easy to understand.

C functions can be classified into the following two categories:

 Library functions: Library functions are those functions which are already defined in

C library. Example: printf(), scanf(), log(), sin() etc. We just need to

include appropriate header files and libraries to use these functions.

 C for Statistics – ratulchakraborty@gmail.com

22

Advantages of using C library functions

There are many library functions available in C programming for writing a good and

efficient program. But, why should we use it? Below are the 4 most important

advantages of using standard library functions.

1. One of the most important reasons you should use library functions is simply

because they work. These functions have gone through multiple rigorous

testing and are easy to use.

2. Since, the functions are "standard library" functions, a dedicated group of

developers constantly make them better. In the process, they are able to create

the most efficient code optimized for maximum performance.

3. Since the general functions like printing to a screen, calculating the square

root, and many more are already written. We shouldn't worry about creating

them once again. It saves valuable time and our code may not always be the

most efficient.

4. With ever changing real world needs, our application is expected to work

every time, everywhere. These library functions help us in that they do the

same thing on every computer. This saves time, effort and makes our program

portable.

 User-defined functions: A User-defined functions are those functions which are

defined by the user at the time of writing program. These functions are made for code

reusability and for saving time and space. Below are the 4 most important advantages

of using standard library functions.

Declaration of a User-defined function

Like any variable or an array, a function must also be declared before it’s used.

Function declaration informs the compiler about the function name, parameters, and

its return type. Functions should be declared in header files or before the definition of

main() function. The actual body of the functions can be defined separately after

main() function. General syntax for function declaration is,

return_type function_name(type_of_parameter1, type_of_parameter2,);

Here Function declaration consists of the following 4 parts:

1. Return type: When a function is declared to perform some sort of calculation

or any operation, it is expected to provide us some result at the end. In such

cases, a return statement is added at the end of function body. Return type

specifies the type of value (int, float, char, double, etc.) that the

function is expected to return to the program which called the function. In case

our function doesn't return any value, the return type would be void.

2. Function name: Function name is an identifier and it specifies the name of

the function. The function name is any valid C identifier and therefore must

follow the same naming rules like other variables in C language.

 C for Statistics – ratulchakraborty@gmail.com

23

3. Parameter list: The parameter list declares the type and number of arguments

that the function expects when it is called.

4. Terminating semicolon: It is used at the end of Function declaration.

Definition of a User-defined function

The general syntax of function definition is,

return_type function_name(data_type parameter1, data_type parameter2, …..)

{

 // function body

}

The first line return_type function_name(data_type parameter1,

data_type parameter2, …..) is known as function header and the

statement(s) within curly braces is called function body. It should be noted that while

defining a function, there is no semicolon (;) after the parenthesis in the function

header.

The function body contains the declarations and the statements (algorithm) necessary

for performing the required task. The body is enclosed within curly braces { ... }

and consists of the following three parts.

1. Local variable declaration (if required).

2. Function statements to perform the task inside the function.

3. A return statement to return the result evaluated by the function (if return type

is void, then no return statement is required).

Example

#include <stdio.h>

float max(float, float);
float min(float, float);

int main()
{
 float max_val, min_val;

 max_val = max(3, 7.8);
 min_val = min(3, 7.8);

 printf("Max. value is %g", max_val);
 printf("\nMin. value is %g", min_val);

 return 0;
}

float max(float x, float y)
{
 float result;

 C for Statistics – ratulchakraborty@gmail.com

24

 if(x > y) result = x;
 else result = y;

 return result;
}

float min(float x, float y)
{
 float result;

 if(x < y) result = x;
 else result = y;

 return result;
}

 Output

Max. value is 7.8
Min. value is 3

Calling a function

While creating a C function, we give a definition of what the function has to do. To use a

function, we have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function. A

called function performs a defined task and when its return statement is executed or when its

function-ending closing brace is reached, it returns the program control back to the main

program.

To call a function, we simply need to pass the required parameters along with the function

name, and if the function returns a value, then we can store the returned value.

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

Formal parameters behave like other local variables inside the function and are created upon

entry into the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be passed to a function:

1. Call by value: The call by value method of passing arguments to a function copies

the actual value of an argument into the formal parameter of the function. In this case,

changes made to the parameter inside the function have no effect on the argument.

 C for Statistics – ratulchakraborty@gmail.com

25

By default, C programming uses call by value to pass arguments. In general, it means

the code within a function cannot alter the arguments used to call the function.

Consider the example of swap() function definition as follows:

#include <stdio.h>

void swap(int, int);

int main()
{
 int x = 10, y = 20;

 printf("Before swap, value of x : %d\n", x);
 printf("Before swap, value of y : %d\n", y);

 /* calling a function to swap the values */
 swap(x, y);

 printf("\nAfter swap, value of x : %d\n", x);
 printf("After swap, value of y : %d\n", y);

 return 0;
}

/* function definition to swap the values */
void swap(int a, int b)
{
 int temp;

 temp = a;
 a = b;
 b = temp;
}

 Output

Before swap, value of x : 10
Before swap, value of y : 20

After swap, value of x : 10
After swap, value of y : 20

The output shows that there are no changes in the values of x & y after using of

swap() function, though they had been changed inside the function.

2. Call by reference: The call by reference method of passing arguments to a function

copies the address of an argument into the formal parameter. Inside the function, the

 C for Statistics – ratulchakraborty@gmail.com

26

address is used to access the actual argument used in the call. It means the changes

made to the parameter affect the passed argument.

To pass a value by reference, argument pointers are passed to the functions just like

any other value. So accordingly we need to declare the function parameters as pointer

types as in the following example of swap() function, which exchanges the values of

the two integer variables pointed to, by their arguments.

#include <stdio.h>

void swap(int *, int *);

int main()
{
 int x = 10, y = 20;

 printf("Before swap, value of x : %d\n", x);
 printf("Before swap, value of y : %d\n", y);

 /* calling a function to swap the values */
 swap(&x, &y);

 printf("\nAfter swap, value of x : %d\n", x);
 printf("After swap, value of y : %d\n", y);

 return 0;
}

/* function definition to swap the values */
void swap(int *a, int *b)
{
 int temp;

 temp = *a;
 *a = *b;
 *b = temp;
}

 Output

Before swap, value of x : 10
Before swap, value of y : 20

After swap, value of x : 20
After swap, value of y : 10

The output shows that the values of x & y changes after calling of swap() function

by reference.

 C for Statistics – ratulchakraborty@gmail.com

27

Recursion in C functions

Recursion is the process of repeating items in a self-similar way. In programming languages,

if a program allows us to call a function inside the same function, then it is called a recursive

call of the function.

The C programming language supports recursion, i.e., a function to call itself. But while

using recursion, programmers need to be careful to define an exit condition from the

function; otherwise it will go into an infinite loop.

Recursive functions are very useful to solve many mathematical problems, such as

calculating the factorial of a number, generating Fibonacci series, etc.

Examples of Recursive functions

1. Factorial of a given number.

#include <stdio.h>

unsigned long long int factorial(int);

int main()
{
 printf("5! = %llu\n", factorial(5));
 printf("10! = %llu\n", factorial(10));
 printf("20! = %llu\n", factorial(20));
 printf("40! = %llu\n", factorial(40));

 return 0;
}

/* Function definition for factorial */
unsigned long long int factorial(int i)
{
 if(i < 0) return 0;
 else if(i <= 1) return 1;
 else return i * factorial(i - 1);
}

 Output

5! = 120
10! = 3628800
20! = 2432902008176640000
40! = 18376134811363311616

 C for Statistics – ratulchakraborty@gmail.com

28

2. Sum of Natural Numbers.

#include <stdio.h>

unsigned long long int natural_sum(int);

int main()
{
 printf("1+2+...+10 = %llu\n", natural_sum(10));
 printf("1+2+...+100 = %llu\n", natural_sum(100));
 printf("1+2+...+1000 = %llu\n", natural_sum(1000));
 printf("1+2+...+10000 = %llu\n", natural_sum(10000));

 return 0;
}

/* Function definition for Sum of Natural Numbers */
unsigned long long int natural_sum(int i)
{
 if(i <= 0) return 0;
 else return i + natural_sum(i - 1);
}

 Output

1+2+...+10 = 55
1+2+...+100 = 5050
1+2+...+1000 = 500500
1+2+...+10000 = 50005000

3. Fibonacci Series.

#include <stdio.h>

unsigned int fibonacci(int);

int main()
{
 int i;

 printf("The 10th term of Fibonacci Series is: %u\n\n",

fibonacci(9));

 printf("The first 20 terms of Fibonacci Series are: ");
 for(i=0; i < 20; i++){
 printf("%u, ", fibonacci(i));
 }

 C for Statistics – ratulchakraborty@gmail.com

29

 return 0;
}

/* Function definition for Fibonacci Series */
unsigned int fibonacci(int i)
{
 if(i <= 0) return 0;
 else if(i == 1) return 1;
 else return fibonacci(i-1) + fibonacci(i-2);
}

 Output

The 10th term of Fibonacci Series is: 34

The first 20 terms of Fibonacci Series are: 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181,

4. Counting total number of digits in an integer.

#include <stdio.h>

unsigned int count_digits(int);

int main()
{
 printf("Total digits in 12337: %d\n",

 count_digits(12337));
 printf("Total digits in 6: %d\n",

 count_digits(6));
 printf("Total digits in -980700: %d\n",

 count_digits(-980700));

 return 0;
}

/* Function definition to count digits */
unsigned int count_digits(int num)
{
 static int temp;

 temp = num/10;
 if(temp == 0) return 1;
 else return count_digits(temp) + 1;
}

 C for Statistics – ratulchakraborty@gmail.com

30

 Output

Total digits in 12337: 5
Total digits in 6: 1
Total digits in -980700: 6

5. Length of a string.

#include <stdio.h>

unsigned int string_length(char *);

int main()
{
 char *string1 = "MBB College";
 char *string2 = "Agartala";

 printf("Total number of characters in '%s' : %u\n",

 string1, string_length(string1));
 printf("Total number of characters in '%s' : %u",

 string2, string_length(string2));

 return 0;
}

/* Function definition to get string length */
unsigned int string_length(char *str)
{
 if(*str) return string_length(++str) + 1;
 else return 0;
}

 Output

Total number of characters in 'MBB College' : 11
Total number of characters in 'Agartala' : 8

6. Lowest common multiple (LCM) of two numbers

#include <stdio.h>

int lcm(int, int);

int main()

 C for Statistics – ratulchakraborty@gmail.com

31

{
 printf("LCM of 15 & 20: %d\n", lcm(15, 20));
 printf("LCM of 118 & 3: %d\n", lcm(118, 3));

 return 0;
}

/* Function definition to get LCM of two numbers */
int lcm(int a, int b)
{
 static int common = 1;

 if (common % a == 0 && common % b == 0) return common;
 common++;
 lcm(a, b);

 return common;
}

 Output

LCM of 15 & 20: 60
LCM of 118 & 3: 354

7. Highest Common Factor (HCF) / Greatest Common Divisor (GCD) of two numbers

#include <stdio.h>

int hcf(int, int);

int main()
{
 printf("GCD/HCF of 15 & 20: %d\n", hcf(15, 20));
 printf("GCD/HCF of 118 & 3: %d\n", hcf(118, 3));

 return 0;
}

/* Function definition to get HCF/GCD of two numbers */
int hcf(int a, int b)
{
 if(a % b == 0) return b;
 else return hcf(b, a % b);
}

 C for Statistics – ratulchakraborty@gmail.com

32

Output

GCD/HCF of 15 & 20: 5
GCD/HCF of 118 & 3: 1

8. Decimal to binary conversion

#include <stdio.h>

unsigned long long int int2binary(int);

int main()
{
 printf("Binary of 17: %llu\n", int2binary(17));
 printf("Binary of 1107: %llu\n", int2binary(1107));
 printf("Binary of 319: %llu\n", int2binary(319));

 return 0;
}

/* Function definition for Conversion of decimal to binary */
unsigned long long int int2binary(int num)
{
 if (num == 0) return 0;
 else return (num % 2) + 10 * int2binary(num / 2);
}

 Output

Binary of 17: 10001
Binary of 1107: 10001010011
Binary of 319: 100111111

9. Binomial coefficient of two numbers (
n
Cx)

#include <stdio.h>

unsigned long long int ncx(int, int);

int main()
{
 printf("5C2: %llu\n", ncx(5, 2));
 printf("10C7: %llu\n", ncx(10, 7));

 C for Statistics – ratulchakraborty@gmail.com

33

 return 0;
}

/* Function definition to Binomial coefficient of two numbers */

unsigned long long int ncx(int n, int x)
{
 if(x < 0 || x > n) return 0;
 else if(x == 0 || n == x) return 1;
 else return ncx(n-1, x) + ncx(n-1, x-1);
}

 Output

5C2: 10
10C7: 120

10. Sorting by Quick-sort method.

#include <stdio.h>

void sort(float [], int, int);

int main()
{
 int i, n;
 float data[100];

 printf("Total observations: ");
 scanf("%d", &n);

 printf("\nInsert observations: ");
 for(i=0; i<n; i++) scanf("%f", &data[i]);

 sort(data, 0, n-1);

 printf("\nSorted observations:");
 for(i=0; i<n; i++) printf("\t%g", data[i]);

 return 0;
}

/* Function definition for Quick-sort method */
void sort(float x[], int start, int end)
{
 int i = start, j = end, k = (start+end)/2;
 float t, middle = x[k];

 do{

 C for Statistics – ratulchakraborty@gmail.com

34

 while (x[i] < middle) i++;
 while (x[j] > middle) j--;
 if (i <= j) {
 t = x[i];
 x[i] = x[j];
 x[j] = t;
 i++;
 j--;
 }
 }while (i <= j);
 if(start < j) sort(x,start,j);
 if(i < end) sort(x,i,end);
}

 Output

Total observations: 10

Insert observations: 3 17 -5 8 7 10 1 8 12 2

Sorted observations: -5 1 2 3 7 8 8 10 12 17

Advantages and Disadvantages of Recursion

Recursion makes program elegant and cleaner. All algorithms can be defined recursively

which makes it easier to visualize and prove.

If the speed of the program is vital then, we should avoid using recursion. Recursions use

more memory and are generally slow. Instead, we can use loop.

Variable Argument in C functions

Sometimes, we may come across a situation, when we want to have a function, which can

take variable number of arguments / parameters, instead of predefined number of parameters.

The C programming language provides a solution for this situation and we are allowed to

define a function which can accept variable number of parameters based on our requirement.

The following example shows the construction of such a function which can take the variable

number of parameters and return their sum.

#include <stdio.h>
#include <stdarg.h>

double sum(int, ...);

int main() {
 printf("Sum of 2.3,3.5,4.6,5.0 = %g\n",

 C for Statistics – ratulchakraborty@gmail.com

35

 sum(4, 2.3,3.5,4.6,5.0));
 printf("Sum of 5.6,10.9,15.1 = %g\n",

 sum(3, 5.6,10.9,15.1));

 return 0;
}

double sum(int num,...) {
 va_list x;
 int i;
 double sum = 0.0;

 /* initialize x for num number of arguments */
 va_start(x, num);

 /* access all the arguments assigned to valist */
 for(i = 0; i < num; i++) {
 sum += va_arg(x, double);
 }

 /* clean memory reserved for valist */
 va_end(x);

 return sum;
}

Output

Sum of 2.3,3.5,4.6,5.0 = 15.4
Sum of 5.6,10.9,15.1 = 31.6

It should be noted that the function sum() has been called twice and each time the first

argument represents the total number of variable arguments being passed.

C - Scope Rules

A scope in any programming is a region of the program where a defined variable can have its

existence and beyond that region it cannot be accessed. There are three places where

variables can be declared in C programming language:

 Inside a function or a block which is called local variables.

 Outside of all functions which is called global variables.

 In the definition of function parameters which are called formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They can be

used only by statements that are inside that function or block of code. Local variables are not

known to functions outside their own.

 C for Statistics – ratulchakraborty@gmail.com

36

Global Variables

Global variables are defined outside a function, usually on top of the program. Global

variables hold their values throughout the lifetime of our program and they can be accessed

inside any of the functions defined for the program. The following program show how global

variables are used in a program.

#include <stdio.h>

/* Global variable declaration */
int x = 10, y = 200;

void change_global(int);

int main()
{
 printf("Value of x, y: %d, %d\n", x, y);
 x = 20;
 y = 400;
 printf("Value of x, y: %d, %d\n", x, y);
 change_global(30);
 printf("Value of x, y: %d, %d\n", x, y);

 return 0;
}

void change_global(int newx)
{

/* Local variable declaration */
 int y;

 x = newx;
 y = newx;
}

Output

Value of x, y: 10, 200
Value of x, y: 20, 400
Value of x, y: 30, 400

Here we can see that a program can have same name (y) for local and global variables but the

value of local variable inside a function will take preference.

 C for Statistics – ratulchakraborty@gmail.com

37

Formal Parameters

Formal parameters are treated as local variables with-in a function and they take precedence

over global variables.

Initialization of Local and Global Variables

When a local variable is defined, it is not initialized by the system; we must initialize it

before use. Global variables are initialized automatically by the system when we define them

as follows:

Data Type Initial Default Value

int 0

char '\0'

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly; otherwise our program may

produce unexpected results, because uninitialized variables will take some garbage value

already available at their memory location.

Arrays in C

Array in C language is a collection or group of elements (data). All the elements of C array

are homogeneous (similar). It has contiguous memory location.

C array is beneficial if we have to store similar elements. Suppose we have to store marks of

50 students, one way to do this is allotting 50 variables. So it will be typical and hard to

manage. We can’t access the value of these variables with only 1 or 2 lines of code. In this

case using array we can access these elements easily by defining a single variable. Only few

lines of code are required to access the elements of array.

Arrays are of two types:

1. One-dimensional arrays

2. Multidimensional arrays

A one-dimensional array is like a list; A two dimensional array is like a table; The C

language places no limits on the number of dimensions in an array. Some texts refer to one-

dimensional arrays as vectors, two-dimensional arrays as matrices, and use the general term

arrays when the number of dimensions is more than two.

Declaration of Array

To declare an array in C, we have to specify the type of the elements and the number of

elements required by an array as follows:

data_type array_name[array_size];

 C for Statistics – ratulchakraborty@gmail.com

38

This is called a single-dimensional array. The array_size must be an integer constant (not

a C variable) greater than zero and data_type can be any valid C data type. For example:

int marks[100];

Here, int is the data_type, marks is the array_name and 100 is the array_size.

A multi-dimensional array can be declared as follows:

 data_type array_name[size_of_dim_1][size_of_dim_2]…..[size_of_dim_n];

Elements of an Array

We can access elements of an array by indices. Suppose we declared an array marks as above. The

first element is marks[0], second element is marks[1] and so on.

It should be noted that

1. Arrays have 0 as the first index not 1.

2. If the size of an array is n, the index of last element is n-1 not n.

3. If the size of an array is 10, we can use the array elements from 0 to 9. If we try to access

array elements outside of its bound, i.e. index greater than 9, the compiler may not show any

error. However, this may cause unexpected output (undefined behavior).

Example

Here will obtain the Mean Deviation about Mean of a data-set using array.

#include <stdio.h>
#include <math.h>

int main()
{
 int i, n;

 /*The one dimensional data array 'x' with a capacity 100 elements*/

 float x[100];

 float mean = 0, MD = 0;

 printf("Total observations: ");
 scanf("%d", &n);

 printf("\nObservations: ");
 for(i=0; i<n; i++){
 scanf("%f", &x[i]);

 C for Statistics – ratulchakraborty@gmail.com

39

 mean += x[i];
 }

 mean = mean / n;

 for(i=0; i<n; i++){
 MD += fabs(x[i] - mean);
 }

 MD = MD / n;

 printf("\nMean Deviation about Mean = %g", MD);

 return 0;
}

Output

Total observations: 5

Observations: 12 23 7 45 10

Mean Deviation about Mean = 11.68

Advantage of Array

1. Code Optimization: Less code to the access the data.

2. Easy to traverse data: By using the for loop, we can retrieve the elements of an array

easily.

3. Easy to sort data: To sort the elements of array, we need a few lines of code only.

4. Random Access: We can access any element randomly using the array.

Disadvantage of Array

Fixed Size: Whatever size, we define at the time of declaration of array, we can't exceed the

limit. So, it doesn't grow the size dynamically.

Array as function parameter

Whenever we need to pass a list of elements as argument to any function in C language, it is

preferred to do so using an array. If we want to pass a single-dimension array as an argument

in a function, we should have to declare a formal parameter in one of following three ways

and all three declaration methods produce similar results. Similarly, we can pass multi-

dimensional arrays as formal parameters.

1. Formal parameters as an sized array

void my_function (int param[10]) {

 C for Statistics – ratulchakraborty@gmail.com

40

 .

 .

}

2. Formal parameters as an un-sized array

void my_function (int param[]) {

 .

 .

}

3. Formal parameters as a pointer

void my_function (int *param) {

 .

 .

}

Now, consider the following example, where the average(..) function takes an array as an

argument along with another argument and based on the passed arguments, it returns the

average of the numbers passed through the array.

#include <stdio.h>

float average(float [], int);

int main()
{
 /*The one dimensional data array 5 elements*/
 float data[5] = {10, 23, 37, 41, 50};

 printf("\nAverage = %g", average(data, 5));

 return 0;
}

/* Function to obtain average of some values */
float average(float x[], int n)
{
 int i;
 float avg = 0;

 for(i=0; i<n; i++) avg += x[i];

 avg = avg/n;

 return avg;
}

 C for Statistics – ratulchakraborty@gmail.com

41

Output

Average = 32.2

Return array from function

C programming does not allow returning an entire array from a function. However, you can

return a pointer to an array by specifying the array's name without an index. While returning

an address of a local variable from a function, it should be remember that we have to define

the local variable as static variable.

Consider the following example where a function returns a pointer to an array of random

numbers.

#include <stdio.h>

int *rand_numbers();

main()
{
 int i, *rnd;

 rnd = rand_numbers();

 printf("\n10 random numbers: ");
 for(i=0; i<10; i++) printf(" %d", rnd[i]);

 return 0;
}

/* Function to generate and return random numbers */
int *rand_numbers()
{
 int i;
 static int r[10];

 /* set the seed of random numbers*/
 srand((unsigned int)time(NULL));

 for(i=0; i<10; i++) r[i] = rand();

 return r;
}

Output

10 random numbers: 9644 18684 1554 1009 11360 18594 32 3593 31637 4038

 C for Statistics – ratulchakraborty@gmail.com

42

Pointers

A Pointer in C language is a variable which holds the address of another variable of same

data type. Pointers are used in C program to access the memory and manipulate the address.

Pointers are one of the most distinct and exciting features of C and C++ programming

language that differentiates it from other popular programming languages like: Java and

Python. Before we start understanding what pointers are and what they can do, we have to

understand “Address of a memory location”.

Address in C

Whenever a variable is defined in C language, a memory location is assigned for it, in which

its value will be stored. We can easily check this memory address, using the & operator. If x

is the name of the variable, then &x will give it's address. Here & is known as reference

operator. In the scanf() function we use it to store the user inputted value of a variable in

the address of that variable like scanf(“%d”, &x);

Example

#include <stdio.h>

int main()
{
 int x = 5;

 printf("Value: %d\n", x);
 printf("Address: %u", &x);

 return 0;
}

Output

Value: 5
Address: 2293572

In above source code, value 5 is stored in the memory location 2293572. x is just the name

given to that location. We may obtain different value of address while using this code.

https://www.studytonight.com/c/

https://www.tutorialspoint.com/cprogramming/index.htm

https://www.studytonight.com/c/
https://www.tutorialspoint.com/cprogramming/index.htm

 C for Statistics – ratulchakraborty@gmail.com

43

https://www.le.ac.uk/users/rjm1/cotter/page_19.htm

https://www.programiz.com/c-programming/c-data-types

https://fresh2refresh.com/c-programming/c-data-types/

https://www.javatpoint.com/data-types-in-c

https://www.le.ac.uk/users/rjm1/cotter/page_19.htm
https://www.programiz.com/c-programming/c-data-types
https://fresh2refresh.com/c-programming/c-data-types/
https://www.javatpoint.com/data-types-in-c

