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1.1 Objectives

Reading this chapter, students will get an idea about
® What Econometrics is
e Relationship between Econometrics and Economic Theory

® Relationship between Econometrics and Statistics
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#® Branches of Econometrics
® Goals of Econometrics

® Methodology of Econometric Research

1.2 Introduction

The term econometrics literally means economic measurement. It can be said
as an integration of economic theory, mathematical economics, economic statistics
and mathematical statistics. However, the subject has an importance to be studied
as a separate discipline. The purpose of econometrics is to provide numerical values
for the parameters of economic relationship and to verify economic theories. In
econometrics, the general economic theory is formulated in mathematical terms and
is combined with empirical measurement of economic phenomenon. It is a special
type of economic analysis where the relationships of economic variable as suggested
in economic theory are expressed in mathematical terms. This is called econometric
model building. Next the statistical methods are used to obtain numerical estimates
of coeflicients of economic relationships. These methods are called econometric
methods.

Economic theory provides various qualitative statements or hypotheses, but
does not provide any empirical support regarding the theories. For example, the
theory of demand suggests that all other things remaining unchanged there exists
an inverse relationship between price and quantity demanded of a commodity i.e.,
economic theory states the existence of an inverse relationship between price and
quantity demanded of a commodity, but it does not express any numerical estimate
about how quantity demanded will be affected due to how much change in price.
In other words, it does not provide any empirical content to ecomomic theory which
is the job of an econometrician.

Mathematical economics expresses economic theories in the form of mathematical
equations, but does not take into account empirical verification of the theory.
Econometricians take into consideration the equations proposed by the mathematical
economists and convert the mathematical equations into econometric equations,
thereby contributing to empirical verification of economic theories,

Economic statistics deals with collection, processing and presenting data, but
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they do not use these data for testing economic theories It is the job of an
econometrician to use these raw data for empirically verifying economic theories.

Mathematical statistics however provides various tools and techniques that are
used by econometrician to analyse economic data. Economic theory tries to postulate
an exact relationship among economic variables. But economic relationships always
contain random elements. Economic theory ignores this, but econometrics deals with
those random components. For example Keynesian consumption function states an
exact relationship between consumption and income 1.e, C = C (¥). In linear form
it is given as (' = a + bY where a is autonomous consumption (¢ > 0) and »
is marginal propensity to consume (MPC) 1.e, 0 < & < 1. In this model the effect
of other variables like wealth etc are ignored. But in econometrics, the effect of
these variables are considered by introducing a random component u. It is called
error term. So the consumption function considered in econometrics i1s C =
a + bY + u. Then econometric methods are applied to estimate the parameters a
and b. The choice of econometric method depends on the behaviour of the
distribution of the random variable #. This error term may arise due to unpredictable
element of randomness in human response, effect of a large number of variables
that have been omitted from the functional relation and measurement error.

1.3 Relationship between Econometrics and Economic Theory

Economic theory suggests various qualitative statements or hypotheses but does
not verify those empirically. This empirical verification of economic theory is done
by econometric methods. For example if we consider the economic theory of law
of demand we get an inverse relationship between price of a commodity and quantity
demanded of that commodity. Economic theory suggests that this can be represented

d. . .. .
by the form ¢ = fip) such that % < 0. This proposition of economic theory can

be tested by applying econometric methods and if the results of empirical verification
of the theory are found to be consistent with the theory, it is accepted; otherwise
it 1s rejected or modified. If the theory is to be modified, then it should not be
rejected, rather it can be modified by including other variables like price of substitute
and complementary goods, income of the consumer, taste and preference of the
consumer, etc. which can be expressed in the form

q =f(pa .pC:r pS:r .ya t)
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where, p = own price of the commodity
P. = price of complementary commodities
ps = price of substitute commodities
y = income of the consumer
t = taste and preference of the consumer

The signs of the parameters and their relative importance in this new model
can also be tested empirically.

Thus, econometric theory provides some hypotheses about economic behaviour.
Econometrics tries to test that behaviour by applying some econometric methods.

1.4 Econometrics and Mathematical Economics

Mathematical economics states economic theory in terms of mathematical
symbols. There is no essential difference between mathematical economics and
economic theory. Both state the same relationship. While economic theory uses
verbal approach, mathematical economics employs mathematical symbols. For
example, the economic theory of law of demand states that if price of a commodity
falls, its quantity demanded will rise and if price rises, its quantity demanded will
fall, other things remaining the same. But mathematical economics will state that

d
quantity demanded (g) is a function of price i.e., ¢ = f{p) such that £< 0, ceteris

paribus. Both the approaches express economic relationship in an exact or deterministic
form. They do not allow for random elements which might affect the relationship and
make it stochastic. Further, economic theory and mathematical economics do not
provide numerical values for the coefficients of the economic relationships.
Relationships in economic theory or in mathematical economics are of non-stochastic
form. But econometrics considers the stochastic relationship in mathematical forms
unlike mathematical economics. In econometrics, it is assumed that relationships are
not exact, rather presence of disturbance term makes deviations from the exact
behavioural pattern suggested in economic theory or mathematical economics.
Econometric methods incorporate these random disturbance terms and also provide
numerical values of coefficients of economic theories. Econometrics combines
mathematical formulations of economic theory with empirical data. It thus enables
to pass the abstrract theoretical schemes to numerical results in concrete cases.
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1.5 Econometrics and Statistics

The concept of econometrics is somehow different from both mathematical
statistics as well as economic statistics. Economic statistics is manily concerned
with collection, tabulation and representation of economic data. They also explain
the pattern of development of the data over time and relationship among various
economic variables. But they do not provide the explanation of the development
of the data over period of time which is mainly the job of an econometrician.
Thus economic statistics is manily a descriptive aspect of economics. It does not
provide explanations of the development of various variables. It does not also
provide measurement of parameters of economic relationships.

On the other hand, mathematical statistics provides tools and techniques which
are developed on the basis of controlled experiment. These techniques cannot be
used in the case of economic theories as such experiments are not designed under
controlled environment except for few cases. In physics and in some other sciences,
researchers can keep all other conditions constant and change only one element
in performing an experiment. But this cannot be done in economics where the real
world is the laboratory. In the real world, all variables change continuously and
simultaneously. Hence controlled experiments are impossible in economics.

Econometrics thus uses statistical methods and helps them adopt the problems
of economic life. These particular statistical methods are called econometric
methods. They measure economic relationship and take into account the stochastic
or random elements as well The random or stochastic elements that exist in the
real world are specified and included in the determination of the observed economic
data and empirical verification of economic theories.

1.6 Branches of Econometrics

Econometrics may be broadly divided into two branches : theoretical econometrics
and empirical econometrics.

1.6.1 Theoretical Econometrics :

Theoretical econometrics deals with the development of appropriate methods
or techniques for testing economic theory empirically. Econometric methods are
actually statistical methods which are adapted to the characteristics of economic
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relationships. There are two types of methods in theoretical econometrics i.e., single
equation and simultaneous equation methods. Single equation techniques are applied
to one economic¢ relationship at a particular point of time whereas simultaneous
equation techniques are used for all relationships of an economic model.

1.6.2 Applied Econometrics :

Applied econometrics deals with the application of techniques provided by
theoretical econometrics to different branches of economic theory. It incorporates
the problems of economic life and the findings of applied research in the fields
of demand, supply, production, cost, consumption, investment, etc. and other
economic theories.

1.7 Goals of Econometrics

Econometrics helps us achieve three main goals i.e., analysis, policy making
and forecasting. We will discuss them one by one.

1.7.1 Analysis :

Economic theories provide qualitative statements or hypotheses without
empirically verifying them. This analysis of economic theories for providing
explanation of the economic system is done by econometrics.

1.7.2 Policy making :

Econometricians carry out analysis of economic theories and obtain estimates
of numerical coefficients of the economic relationships. This estimates helps in
prescribing appropriate policies to the government. For example, if the price
elasticity of demand of certain goods are estimated, then it ¢can be said how much
additional revenue the government can raise by imposing tax on those commodities.
Alternatively, if the estimates of price elasticities of exports and imports are
calculated, it can be said how much the policy for devaluation will be effective
in solving the balance of payments deficit problem.

1.7.3 Forecasting :

The numerical estimates of coefficients of economic relationships are used to
forecast future values of variables, without which appropriate policies cannot be
designed.

It may be mentioned that these goals are not mutually exclusive. Some
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combination of all these aims or goals is necessary for a successful econometric
application.

1.8 Methodologies of Econometric Research

Applied econometrics deals with the measurement of parameters of economic
relationships and prediction of wvalues of economic variables. However, the
definitional relationships do not require any such measurements. For example,
consider the relationship among national income, consumption expenditure and
investment expenditure in a closed economy, 1e, ¥ = (C + 1, This mathematical
expression of national income in a closed economy does not explain its determination
or causes of its variation. It i1s a definitional equation and does not require any
measurement.

There are generally four stages in any econometric research.

Stage A : Specification of the model

Stage B : Estimation of the model

Stage C : Evaluation of estimates

Stage D : Evaluation of the forecasting power of the estimated model.
We will discuss these four stages one by one.

Stage A : Specification of the model :

It 15 the first stage of econometric research. It involves expressing the hypothesis
or the economic theories in their mathematical form. In this stage the dependent
and explanatory variables are identified and included in the model. The theoretical
expectations about the sign, size of the parameters of the function are also
determined and the mathematical form of the model is specified. For example
consider the production function of the following form ¥ = f (K, L) where K and
L are the two factors of production, capital and labour, respectively and Y is the
level of output. This function can be expressed in its mathematical form as a Cobb-
Douglas production function as ¥ = K*L5 or its log linear form as log¥ = alog K
+ fBlog L. Also, some restrictions are to be imposed on it like 0 < (o, ) < 1,
o + 3> 1 if there is increasing returns to scale, o + 8 < 1 if there is decreasing
returns to scale, o + B =1 if there is constant returns to scale. « is the elasticity
of output with respect to capital and 3 is the elasticity of output with respect to
labour.
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Stage B : Estimation of the model :

It 1s the second stage of econometric research and deals with the estimation
of the model specified in the first stage. This stage includes collection of data on
different variables included in the specified model, examining the indetification
conditions of the function in which we are interested, examining the aggregation
problems of the involved function and examining the degree of correlation among
the explanatory variables. For example if we consider the relationship between
consumption expenditure and level of income, wealth and prices which i3
represented by the equation as follows : C = ¥ + BW + ¥ where C represents
consumption expenditure, } represents level of income, W represents wealth level
and P represents price level. Then we need to check if ¥ and W, W and P, or
Y and P are correlated i.e., the problem of multicollinearity exists or not. The next
step involves the selection of appropriate econometric techniques for estimation
of the function and examining the assumptions of the technique used for estimation
and its economic implication for estimation of the coefficients.

Stage C : Evaluation of estimates :

After the estimation of the model, the next stage in econometric research is
to consider the reliability of the estimated results i.e., the evaluation of the estimated
results. Evaluation of estimates implies whether the estimated results are theoretically
meaningful and statistically significant or not. For evaluation, three major criteria
are used, namely, economic criteria, statistical criteria and econometric criteria.

Economic criteria are determined by the principles of economic theory and
they refer to the size and sign of the estimated parameters of economic relationships.
For example, the Keynesian consumption function is expressed in the mathematical
form as follows : C = g + &Y where C is the consumption and Y is the level
of income and « and b are the parameters whose values and signs are to be estimated
on the basis of observed data. The existing theory suggests that ¢ > 0 and
0<h <1

Statistical criteria or first order tests are determined on the basis of statistical
theory and they focus on the statistical reliability of the estimated parameters. The
most common criteria are correlation coefficients and standard error of estimates.

Econometric criteria or second order tests are determined on the basis of the
theory of econometrics. The focus on whether the assumptions of the econometric
method employed are satisfied or not. These tests are called secondary tests because
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these are actually statistical tests and determine statistical reliability. They establish
whether the estimates have the desirable properties of unbiasedness, consistency,
etc.

Stage D : Evaluation of the forecasting power of the estimated model :

The objective of any econometric research is to obtain estimates of the
coeflicients of economic relationships and to use them for predicting future values
of economic variables such that appropriate policies can be designed by the policy
makers. So, econometricians must test the forecasting power of the estimated model
as it plays an important role in designing approprate policies.

1.9 Summary

To summarize, econometrics literally means economic measurement. It is an
integration of economics, mathematics and statistics. But the subject has an
importance of its own to be studied as a separate discipline. It does not rely on
qualitative hypothesis only like economics, nor does it focus on purely statistical
methods only. It adopts statistical methods after adapting them to the problems
of economic life. There are three major goals of econometrics, namely, analysis,
policy making and forecasting. Econometrics is divided mainly into two branches,
namely, theoretical and applied econometrics. Theoretical econometrics deals with
development of appropriate methods for measurement of economic relationships
while applied econometrics deals with application of those methods in several
branches of economic theory. Lastly, there are four stages of econometric research.
The first stage involves specifying the model that is to be estimated, the second
stage involves collection of data and obtaining the estimates of the parameters of
the model, the third stage involves evaluation of the estimated parameters on the
basis of economic, statistical and econometric criteria and the last stage involves
evaluation of the forecasting power of the model.

1.10 Exercise

Short Answer Type Questions :
1. State true or false :

{a) Econometrics is an integration of economics, mathematics and statistics.
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(b) Forecasting 1s not a goal of econometrics.

2. Choose the correct alternative :

(a) There are stages of econometric research
(i 3
(i) 4
(1) 5
(iv) 1
(b) econometrics deals with the development of appropriate

methods for measurement of economic relationship.
(1) Theoretical
(ii) Applied
3. Fill in the blanks :
(a) The term econometrics means

(b) The evaluation of estimated parameters in econometrics 15 based on
criteria, criteria and criteria.

4. Define Econometrics.
5. What are the main branches of Econometrics ?
6. Mention the main goals of Econometrics.
Medium Answer Type Questions :
1. Discuss the relation between econometrics and economic theory.
2. How is statistics related to econometrics ?
3. What is meant by theoretical econometrics ?
4. Write a short note on applied econometrics.

Long Answer Type Questions :

1. What is econometrics? How is it different from mathematical economics
and statistics ?

2. What are the two branches of economic theory ? Distinguish between them.
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3. Mention the major stages of econometric research. Discuss briefly about
them.

4. Briefly discuss the major goals of econometrics.

1.11 References

1. Gujarati, D (2003) - Basic Econometrics, McGraw Hill Higher Education.

2. Sarkhel, Jaydeb and Santosh Kumar Dutta (2020) : An Introduction to
Econometrics, Book Syndicate Private Limited.

3. Koutsoyiannis, A (1996) : Theory of Econometrics, ELBS with Macmillan



Unit -2 Q0 The Classical Linear Regression Model
(CLRM)

Structure

2.1 Objectives

2.2  Introduction

2.3 The Simple Linear Regression Model

2.4  Classical Linear Regression Model and its Assumptions

2.5  Ordinary Least Square (OLS) Method of Estimating Regression
Parameters

2.6  Properties of OLS Estimators
2.6.1  The Property of Linearity
262  The Property of Unbiasedness
263  The Property of Smallest Variance
2.7  Goodness of Fit of the Multiple Correlation Coefficient (R?)
2.8 Some Numerical Examples
2.9 Summary
2,10 Exercise

2.11 References

2.1 Objectives

Reading this chapter, students will get an idea about

The Simple Linear Regression Model

® Classical Linear Regression Model and its assumptions
® Ordinary least square (OLS) method of estimating regression parameters
® Properties of OLS estimators

18



NSOU e PGEC-IX 19

2.2 Introduction

Economic theories deal with relationships among variables and these
relationships when expressed in mathematical forms are mostly deterministic
relationships or non-stochastic relationships. Deterministic relationships are those
relationships where for a given value of the independent variable there exists a
definite value of the dependent variable. Consider the economic theory of the law
of demand, where we know that there exists an inverse relationship between the
own price of a commodity and the quantity demanded of the commodity assuming
that other things remain unchanged. If this relationship is expressed in mathematical
form, then it can be expressed as ¢ = f(p) assuming ceteris paribus (other things
remain unchanged). This functional relationship may be linear, quadratic, logarithmic,
exponential or hyperbolic. If we specify the functional form of this ralationship as
g = o+ Bp =100 - 5p, then for each value of price level, we get a unique value
of quantity demanded. This type of relationship is called deterministic relationship
or non-stochastic relationship. But such deterministic relationship is not found in
the real world. This deterministic relationship breaks down if the ceteris paribus
assumption is relaxed and then we get a stochastic or random relationship. The
relationship between two variables, say, X and Y 1s said to be stochastic if for each
value of the independent variable X there exists a probability distribution of the
values of the dependent variable Y. In this case we rewrite the earlier demand
equation as ¢ = a + ffp + # = 100 — 5p + w where u is the disturbance term
as it disturbs the otherwise deterministic relationship,

2.3 The Simple Linear Regression Model

Economic relationships are actually deterministic relationships among variables,
but these relationships are to be tested or verified empirically by econometric
techniques, which imply a strong belief of the existence of stochastic variables or
random disturbance terms in economic theories. The knowledge of econometrics
tries to test these economic theories in terms of stochastic variables. The simplest
form of stochastic relation between two economic variables i1s given by Y, = «
+ BX; + u; where Y is the dependent variable, X is the independent variable,
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and 3 are regression parameters, # is the disturbance term, / represent the no. of

observations and # is the sample size. The stochastic nature of this regression model

states that for every value of the independent variable X, there exists a whole

probability distribution of the dependent variable Y ie., the value of ¥ can never

be predicted directly due to the presence of stochastic term #. There are a number

of reasons for which this stochastic variable # should be included in the simple

linear regression model.

Omission of variables from the function : The disturbance term
considers the effect of several variables which are not included in the
model. For exmaple, if we consider the simple regression model as
mentioned above where Y, the dependent variable be consumption
expenditure and X, the independent variable be disposable income, then
it might be possible that there are other variables apart from disposable
income which affect the consumption expenditure. But such variables are
not included in the model and the effects of such variables are captured
by the disturbance term.

Unpredictable element of randomness in human responses : Human
being does not behave like machines and so there is an unpredictable
element in households’ consumption expenditure behaviour which is
captured by the disturbance term.

Imperfect specification of the mathematical model : It might be possible
that we have linearized a non-linear relationship or we might have left
out some equations from the model Such imperfect specifications of the
mathematical form of the model are captured by the disturbance term.

Aggregation problem : In economics, we are often faced with the
problem of aggregation. We add up magnitudes whose behaviour are
dissimilar and these result in disappearance of individual peculiarities from
the model. There are other types of aggregation which lead to errors in
the relationship of the variables in the model.

Due to errors in measurement : The disturbance term measures the errors
in recording or processing of the data on X and ¥ It thus reflects the
errors in the observations.
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2.4 Classical Linear Regression Model and its Assumptions

We consider a stochastic relationship between two variables, X and } which
is given by the model ¥; = o+ BX; + w; for i = 1, 2, ..., n where Y is the dependent

variable, X 1s the independent variable, # is the disturbance term, i denotes item,

n denotes number of observations and o and B are parameters whose values are
to be estimated on the basis of values of X and ¥ This model is called Classical

Linear Regression Model if it satisfies the following assumptions

Assumption 1 : The regression relationship is linear 1.e, the variables
are linearly related.

Assumption 2 : X is non-stochastic for a given sample, but it may take
different values for the given sample,

Assumption 3 : The disturbance term #; is a random variable and its
probability distribution is assumed to be normal

Assumption 4 : The probability distribution of the disturbance term is
such that its mean is zero ie., E(u;) = 0. Since we have, ¥; = o + X,
+u;. So, E(Y) = E(a + BX; + w) = E(o) + BECX) + E(u) = a + BX,
as E{(w;) = 0 and E(X;) = X; This implies that the expectation of the
observed value of the dependent wvariable is its true value 1e., the
probability distribution of ¥; i1s centred around the true relationship.

Assumption 5 : The variance of the disturbance term is a constant and
is independent of 7 where / = 1, 2, ....., » and is denoted by 62 or &°.
This implies that Var (u;) = o2 ie, Elu; — E(,y = E[u;* = o7 since
we know from assumption 4 that E(#;) = 0. So both the assumptions
together imply that u; ~ ID (0, ¢?) for i =1, 2, .., n

Assumption 6 : Different error terms are independently distributed
ie, B, u) = Eu)E@m) and Cov (u;, u;) = 0 for i # j and
Cov (u;, uy) = c? for i = j where, i, j =1, 2, ... . n

Assumption 7 : The independent variable X is non-stochastic or non-

random i.e., X is not a random variable and is measured without error
and #; 1s independent with explanatory variables 1e, Cov (X}, #;) = 0.
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® Assumption 8 : The explanatory variables are independent to each other
ie, Cov (X;, X)) = 0. If this assumption is violated the problem of
multicollinearity arises which will be discussed in Unit 4.

® Assumption 9 : The number of observations must be greater than the
number of parameters to be estimated ie, #n > £

¢ Assumption 10 : The model is correctly specified 1.e., there does not
exist any specification error.

2.5 Ordinary Least Square (OLS) Method of Estimating
Regression Parameters

There are various methods for estimating regression parameters i.e., the method
of moments, the method of ordinary least squares (OLS) and the method of
maximum likelihood (MLE). We shall discuss here the method of ordinary least
squares {(OLS) for estimation of the regression parameters.

We consider a two-variable linear regression model as Y; + o + BX; + u; where
X 1s the independent variable, Y is the dependent variable and # is the disturbance
term. If the assumptions mentioned in the previous section are satisfied, then this
model is the classical linear regression model with parameters o« and B which are
to be estimated using OLS method. Let ¢ and ﬁ be the estimated values of «

and . The estimated relation becomes ¥, = &+ﬁXr. and ¢; = Y, — Y1 is the residual

term which shows the difference between the observed and estimated relation. In

OLS method we need to estimate that values of & and B for which Y7 &2 is

- , L ~\2 ~ a2
minimum i.e., we need to minimise ¥? e?=3¥" (}j—Yl) = X (Yi—a—ﬁXf)

through the choice of o and ﬁ For minimisation the necessary conditions are
8y 1 2

i=l*>i =0

dox

O,

E

)2 (Y; ~o —EX:')Q -0
oo -
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From (1”) and (2") we can write

it

NYo=na+BX, a”)
i=l

it it ~ it

ZIX,K =aZle+ﬁ ZlX,Z ...................... 2
i= i= i=

These two equations are known as normal equations. Solving them we can
estimate the values of & and §.

From (17), dividing both sides by n we get,
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which is the OLS estimate of &

Now, solving (1”) and (2”) using Cramer’s rule we have,

" Zf;-’
S =% Thy
o, T X,
>X, XX
or E_nZX:’K'_ZXfZK'
? - 2
anr‘z_(in)
v poCeln)
Var (X,)
or, ﬁ=&
> x;

Where x, = X; - X and y;, = ¥; - ¥

So, the OLS estimate of § is B= ZX,-,;,- .................. (B)
XX

2.6 Properties of OLS Estimators

The OLS estimates are called BLUE (best, linear, unbiased estimates) provided
that the random term # satisfies some general assumptions namely that # has zero
mean and constant variance. This proposition along with the set of assumptions
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under which it is true is known as the Gauss - Markov Least Squares theorem.
The OLS estimates have basically three properties :

® They are linear
® They are unbaised
® They possess the smallest variance.
We now prove them one by one.
2.6.1 The Property of Linearity

The least square estimates of & and ﬁ are linear functions of the observed
sample values Y;, We will prove this property as follows.

N N ~ XV, —_
From the previous section we know, ﬁ:& where x; = X; — X and

X7
yi=Y, -7 and & = ¥ - BX. Now, from (B) we have,
N XX
>
o 3=Z?=1(Xs‘f)(f’f—)_’)
Z?:I(Xi_f)z
or, B= ?:IY:‘(X.;_Y)‘I_IZ;}:](X,-—Y)
S (s, -X)
~ LY -X)
or, ==Y 1_2 [since ZZLI(XI,—}) = 0]
Z?:](X _X)
- 7 ¥Y.x.
or, ﬁ=zr;1 ;(?
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X.

We assume, n‘ > = Kifori=12 ... .n
7y
=1

So, B=2 L, K],
. ﬁ = KIYI + KzYQ + + K”Yn

ie, B is a linear function of 7.

Now, from (A) we know,

G=Y-BX

o, &=¥-X Y K7,

or, &:% Yi—f KY,

O

—t

» 6{=|:l—K1yj|}]1+|:l—K2yj|Y2+ ..... +|:l_K y]y
H H H

which shows that & is also a linear function of ¥

2.6.2 The Property of Unbiasedness

The least square estimates of & and ﬁ are said to be unbaised if E(q) =

a and E(f) = B.

We know, B=2x{- where x, = X, — XY and y, =Y, — ¥ and & = Y-
X

o —

BX .
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Now, we have,

Or, E =

Or, B =

or, E:

or, E=

it
or, B=2Kfyf where K, = zﬂ =
i=1 ' '
Now, putting ¥; = o + BX, + u;, we get,

B:il{f(a+ﬁ){f+uf)
i=l

o, B=aY” K +BY " KX, +Y ' Ku,

We know, K; =
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4
n _ i=1 % _ 0 P # R =,
So, K PRI =0 since Z;‘:le _Z;=1(X:'_X)‘0
i=1% i=1%

Also, ¥ KX, =" K‘(x‘+)?) asx, =X, - X
j=] "1 =] A

o, Yo KX =Y Kx+XY' K,

L]

L i
o, Y KX, =Y  Kx+0as) K =0

O,

or, ZK:' X; =1

. ~ 4
Hence we can write from, = o « 0 + f = 1 + Zilef”:'

So. E(B)=E(p+3" Ku,)=E(B)+ 31 KEw,)=p+0=p as E(w) = 0
i.e, Jis the unbiased estimator of

From equation (A) the previous section we know,

-BX

=)

o=

or, o=
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"

o, = 2 [%—Kif]}’f

i=l

Now, putting ¥; = a + BX; + u; we get,

Q= i[——f( X] [ + BX; + u)]

i=l

or, a+2 BX, +zlu —ZaKX Y BK.X; X

i= l

il _
- K, Xu,
i=1

n n [ __H __H
or. @ =%a 21% BY X, +i2ui ~aXY K, -pXY KX,
© =l i=l =1 i=l i=1

. H n H .
Since we know, > ' K;=0,> " K.X,=land } 1=, we can rewrite the
above expression as

~ 1 - . 1 n = = n
o _;O‘""'ﬁX"';zf:]ur‘ —O—ﬁX.l—thleu:.

o, G=a+fX+— Eu -BX - XZKN
i=1

o, &= a+12u —XZKH
i=l1 i=1
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So, E(@)=E(@+13" E@)-XY" KE@,)

or, E(&)=a since E(u;)=0

Hence & is also an unbiased estimator of o
2.6.3 The Property of Smallest Variance

This property indicates that the least square estimates are best i.e., they have
the least variance compared with any other linear unbiased estimator obtained from
other econometric methods. To prove this property we first estimate the variance

of & and f§ and then prove that their variance is least than any other estimate.

Variance of B:Var(B)=E[ﬁ_E(ﬁ):|3 =E[ﬁ—ﬁ]z since E(B)zﬁ

Again, from the previous property we know,

o 6ot [

or, Var (ﬁ) = E[ik’?uf +2 ZZKI.Kjuiu}.]
=

i#f
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i

or, Var(ﬁ)= ZKT,ZE(H.?)-I'Z ZZKinE(iiiiJ}.)

i=l i

or, Var(ﬁ):inE(uf), since E (uu;) = 0
=1

i

of, Var(ﬁ) = ZK}ZO’&

i=1

DX
X
=177 X

or, Var(ﬁ)= o2 since K, =
§ 2 I Yo
2
on Var(B)= 3"

=177

We now obtain the variance of the OLS estimate of ¢ ie., o . So, Variance
of & = Var(&). From (A) we know, @=Y-BX. Substituting the value of

B =2;;1K,-Y,. in the above expression we get,

_ __u
G=Y-X> K},
=l

n
‘ Y _ i _
or, &:%—X z}Kfo or, &=Z(%—XKJ}§
= i=1
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O,

Now,

So

or,

or,

or,

Or,

O,

Var(&)=i[(i—fKi)TVar(K)

i1

Var (V) = E[Y; - E(¥)P
= E{ax + BX; +u;— a— BX, - E(u)]?
= E(u; - E (u))?
= Var (1)) = 62

" 2

Var(@)=), [(% - XK, )] o

o=1

n — -2
Varl@)=02 3521 Tk, + Tk
=l '

n n
[since Y K,=0and > K=

B2
i=1 i=1 Zf:] Y

—2
Var(&)=6§ [%"' )n{ ')J
Zlex,-

NSOU e PGEC-IX
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.2” x> +nX

i=1"i

ny X

or, Var(g)= 63

z ?_1 (X, — f)z + HY2

nzrlf

o, Var(g)=0,

2

] > 7wl =2 =2
| D X2 Y X +n X +nX

nz ?:1 xf

or, Vaf(oc)=0'

Y X7 -2nX +2mX

HZ; 1 ,

or, Var(&)= 0'5

H 5
X
=14

E:” 2
H X;:
| =11

or, Var(g)=o0?

Let us show that var (g) and var ( B) are least.

Now, let us assume that 3 is any other linear unbiased estimator such that

ﬁ = X.0,Y; where o = K, + d; for any value of d;. Here ﬁ 15 linear. So, we have
B= Ew,K
]

o, E:Za)i (0+BX; +u;)

o, B=aY w+BY wX,+> au
; i i
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It is also assumed that, B is also an unbiased estimator of § like B. So E(8)
= B. This assumption will be fulfilled if Z,e0; = 0, Z,0,.X; = 1 and Z,m,u; = 0.

NOW, Z,‘OJ,‘ =0 lmplles Zid, =0 as 230)3 = Z,‘ (KI + d,) = Z,‘K,‘ + Zid, Since
we know from previous properties that 2,X; = 0, so X,a; = X.d; and if X, = O then,
X, = 0.

Similarly, 2;a;X; = 1 requires that Xd; X; = 0 because 2,0 X; = 2, (K; + d))
X, = 2K, X;+ 2.4, X, Since from previous properties, we know 2K, X;= 1, so we
have, 2d, X, = 2o X; - 2K, X;ie, 2dX,=1-1=0.

SO, if Z,‘OJ,‘ = 0, 230),:){3 = 1, Z,df = 0 and E,d,.X; =0 then,
B=p+ Zmiui
1

So, E(B) = B+ Zuw; E (w;) = B since E (1) = 0

Now, from the first property of OLS estimator, we know
p= 2 KT
i

So, Var(B) = Var (ZKY;) = 5, K? Var(¥;) =3, K?o?
Similarly, § = .Y,

So, Var() = Var (X0 = 3, 0*Var(Y,) =3, 0?62
Now, 2, O),z =3, (K, +d; Y= % Kfz +Z; dfz +2% K4,

254 _ Zi(Xi _})dr‘ _ Y, xd; =X, Xd,

Here, ) . K.d;, =
R TS T e

Y, %d, - X34, -0
pI

[As 3. X,d,=0and ¥ d, =0]
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Putting the values we get,

Var( ) 220)

i

o, Var(§)= 03 (k2 +a?)

i=l
. H F
o Var(g)=c2 3 K2 +02 3
i=1 i=1
or, Var()=Var(p)+o2 3 d?
i=l

. > TR . . =
Since, ¢, 2,:1“’:' >0, we can write from the above expression, Var (f§) >

Var ( ﬁ) ie., the OLS estimate of [ has the lowest variance than any other linear
unbaised estimate.

In a similar manner it can be proved that the OLS estimate of o ie, «
possesses the least variance than any other linear unbaised estimate of .

We assume, ¢¢ to be a linear unbaised estimate of « other than the OLS estimate
with weights @; where @, = K; + 4,

L
1 —
h 1_
We have &= E‘(” XK:)
} —
Similarly, &= 2(l—X )
Fi

i=l

-

So, &= (——Xa))}’l (——Xa)z)}’2+ +(;—Xa))

ie., o is a linear function of };

Now, ¢¢ is an unbiased estimator of & if E (¢¢) = «

Now, putting ¥; = o + X, + u; we get,
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i(——){a) ) (0+BX, +u,)
-1

1

. _# " _
o, = a[l XY o, +ﬁ|:X—XZ(DfX:}+Z|:%—X(Df]H,-
i=1 i=1

i=

So, E(ﬁc)=a[l—fE(2;’=la)i):|+ﬁ_X—fE(z;;la)fo):I+E[2;'=l(%—}(of)uf]

Now, E(¢) = o if and only if ¥? @, =0,T% @, X;=1and 3% 04, =0 and

these conditions require d;=0and T 4. X, =0.

Now, variance of ¢ is given by

Var(éc)=\far[i(—-x@) }
or, Var(@)= Iz:,(%— X, )2 Var[¥]

i = =2
or, Var(&)=cr§2[nlz—2%Xwi+X cof]
i=1

i 2
or, Var(@)=02| 221XV 0.+ XY o?
_ (G)y=0c; > 2nX§a),+X g‘a),

4
of, Var(&)=0> 1, Z -}smce Yo, =0

i=1

or, Var(&)=0'12 (i +Zd2 H since 2Kd; = 0
=1

i=l
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or, Var(ﬁc)=o‘§[l+ X ] |:(_y X zaﬂ} since z 2=

=1

or, Var(&)= Var(a)+ [o‘f X de}

Since Y7 d7 >0 because all d/s are not zero, so Var(&)> Var(¢) ie., the

OLS estimate of o has the least variance.

2.7 Goodness of Fit of the Multiple Correlation Coefficient (R?)

So far we were concerned mainly about the estimation and precision of the
regression parameters ¢ and . But we need to consider the regression line as a
whole and examine its goodness of fit. We know that the error of estimate,

e, =Y -Y; So, Y. =Yi+e,
e, observed value = estimated value and the error of estimate.
From this we can write }, —}_’=(I’>,- —)_’)+e,-

Now, squaring both sides and summing for all / we have,
Y5 -FY =X [F-F)+e ]

or, Y1, -F) =X (7, -F} 22 (7, -F)+ T e?

Now, 3 (7;=F)e, = S (6+BX, ~V)e, =63 e, +BY Xie, - Y e,

From the first and second normal equations we know,
S ¥ =ni+fY X,
3 X1 =63 X, +BY 7
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E(Y; _d‘BX:’)
= Y ¥, -n6-BY X,
= X5-Xr

=0

L
Il

= LXY -6 XX -y X

=0
So, >.(7;-¥)e; =0

Hence we can write, 3 (V-7 =Y (Vi-7)*+Ye? or, Y. (F,-7)=
T (Fi-F)2 + 3 (e;-2)? [~ =0] ie, Var(¥)=Var (7)+Var (¢)

or, Total sum of squares (TSS) = Explained sum of squares (ESS) + Residual
sum of squares (RSS). Let us express our result in deviational form,

QOur first term on the RHS = Z(}? i —}7)2

= 2(‘3‘4‘3){;‘?)2
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Hence we can write Z(K —}7)2 = ﬁzz‘(){f —Y)Z +Eei2

on YyP=B Yy

ie. Var(Y)=Var(¥)+ Var(e)
or, TSS =ESS + RSS
Thus the total variations in ¥ can be decomposed into two parts :

(1) The estimated effect of X on the variations in ¥ which we call the explained
sum of squares.

(i1) Zef or the unexplained variation in Y in the estimated relationship
between Y and X.

We call it residual or unexplained sum of squares (RSS)
Thus, ESS + RSS = TSS

The ratio of ESS and TSS is taken as a measure of goodness of fit of the
regresion line. It is also called coefficient of determination and is denoted by R2.

_ Explained Variation (ESS)
~  Total Variation (TSS)

Thus, R?

Var (¥)
Var (V)
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2

>.x7
S X7

o Xy-de
¥

Ze
Zy,

_RSS
TSS

T

RSS _ 2 __ESS
TSS =1-R=1- TSS

In symbols, ESS + RSS = TSS

From this we can write,

ESS  RSS _,
LTSS TSS

ESS _,_RSS
TSS TSS

g RSS_;_ESS
and  Tgg TSS

Let us determine the range of value of R2,
We have, Var (¥) = Var (f’)+Var(e)
Since Var (¢)=0

ee may write, 0 < Var ()7) < Var (1)

Var(¥)

<1
Var(¥)

Thus, 0<

o, 0<R*<1

When Var (¥) =0, R? = 0
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ie. When Y y7=Ye¢?
or, Var (¥) = Var (e)

Here observed values are as much variable as the error of estimates. Therl the
estimated line has no “goodness of fit”. On the other hand when, R> = 1 Var (¥) =

Var (¥) ie., Zef =0 or Var (e) = 0 i.e., the regrssion line has the best fit or, the
highest goodness of fit.

2.8 Some Numerical Examples

1. Consider the data on advertising expenditures (X) and sales revenue (¥) for
an athletic sportswear store for 5 months.

The observations are as follows :

Month Sales Revenue (Y) Advertising Expenditure (X)
(in *000 %) (in ’00 T)
1 3 1
2 4 2
3 2 3
4 6 4
5 8 5

Estimate the regression equation.
Solution :
Let ¥; = a + BX; + u; be the regression equation.

The two normal equations for estimating the regression coefficients are :
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Calculation for estimating o and B i.e., estimates of o and B.
Month | X Y, X7 X, i =Y —&-pX,
1 1 3 1 3 0.8
2 2 4 4 8 0.6
3 3 2 9 6 -26
4 4 6 16 24 0.2
5 5 8 25 40 1.0
n n n ) n
Total Zle.:IS _21Y1223 ZIXZ. =55 _lein =81 i, =0
1= 1= 1= =
Here n = 5

So, from (1) and (2) we have

S5a + 158 =23

156 + 558 = 81

......... (1a)

Solving (1a) and (2a) by Cramer’s rule, we get,

‘23 15‘
. 131 S5 1265-1215 _ 50 _
® = 15 15 275-225 50
15 55
‘5 23‘
~ 115 81 405-345 _ 60
B =15 1357 275-225 ~ 50
15 55

The estimated regression equation is, Y =6+ BX =Y =10+12X

This result states that if advertisement expenditure (X) is ¥ 0 then sales revenue

is ¥ 1000.
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If advertisement expenditure increases by 1 unit i.e,, ¥ 100 then sales revenue
on an average rises by ¥ 1,200. The errors are also estimated by #, =Y, —1.0-1.2.X;
as shown in the last column of the table.

2. The following table includes the price and quantity demanded of the product
of a monopolist over a six year period :

Year Quantity (C000 Kg) Price (00 )
1990 8 2
1991 3 4
1992 4 3
1993 7 1
1994 8 3
1995 0 5

(1) Estimate Ithe demand function, assuming a linear demand function.
Comment on the values of the estimated coefficients (@ and ) on the
basis of economic theory.

(i) Forecast the level of demand if price rises from ¥ 4 to ¥ 5. Comment
on your forecast.

Solution :

Let ¥; = a+ BX; fori =1, 2, ... 6, be the linear demand function. By the
OLS method we can get the estimators of o and S.

Here Y = demand, X = price, o, B are two parameters.

Theoretically we may assume o > 0, B < 0. By OLS method

_ inyi
2

when x; = X; — X,

=)
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Calculation for & and J

Year Quantity Price Vi X; XY x?
(m) | (000 Kg) | CO0%) | =V,-Y | =X;— X
Y X
1990 8 2 3 -1 -3 1
1991 3 4 -2 1 -2 1
1992 4 3 -1 0 0 0
1993 7 1 +2 -2 —4 4
1994 8 3 3 0 0 0
1995 0 5 -5 2 -10 4
Total | XV,=30 | ZX;=18| Xy,=0 | 2x,=0 [ Zxp; = -19| Zxf =10

Here n = 6
X = ZnX":%ﬁ
Now, B = Z{;;’ == =19
& =Y-BX =5-(-19)x3

=5+57 =107
So, the estimated regression equation is ¥ = 10.7 — 1.9X

This is consistent with the economic theory where we assume ¢ > 0 and
B < 0 and it clearly shows an inverse relationship between price and demand (i.e.,
the law of demand holds true).

From the estimated demand function, we have to forecast the level of demand
when price rises to ¥ 5 ie, X = 5.
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The demand function is }A’ = 10.7 - 1.9X

When X = 4, 7

10.7 — (1.9 x 4)

= 7.09

If X =5, Y =107 - (1.9 x 5)
=107 - 95
=12

This shows that if price rises from T 4 to I 5, quantity demanded falls from
7.09 to 1.2. ie, from 7,090 Kg to 1,200 Kg.

3. The following table shows ten pairs of observation on X (price) and ¥
(quantity supplied).

No. of Quantity Price
Observations (in tons) (in 00 %)
(n) () )
1 69 9
2 76 12
3 52 6
4 56 10
5 57 9
6 77 10
7 58
8 55
9 67 12
10 53 6
11 72 11
12 64 8

(1) Assuming a linear supply function, estimate the supply function. Comment
on the values of the estimated coefficients (o and /§ ) on the basis of economic theory.

Solution :

Let V;=oa+ BX;fori=1 2 ... 12 be the linear supply function. By
OLS method we can get the estimates of o and f3.
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Here Y = supply, X = price, o and 3 are two parameters. Theoretically we

may assume o = 0 and f3 > 0.

By OLS method we may get,

NSOU e PGEC-IX

N Xy, _
[ 224;21 where x, =X, -X,
i
Y, = Yl -Y
and G=Y-— B}
_ X.
where X = Z !
n
— Y.
and ¥ = Z :
n
Calculation for (o, B)
Observation Y; X; X; Vi Xy x;
(n) Quantity Price =X,-X|=V,-7Y
(in tons) (in ’00 %)
1 69 9 0 6 0 0
2 76 12 3 13 39 9
3 52 6 -3 —11 33 9
4 56 10 1 -7 -7 1
5 57 9 0 -6 0 0
6 77 10 1 14 14 1
7 58 7 -2 -5 10 4
8 55 8 -1 -8 8 1
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Observation Y; X; X; Vi Xy X;
(n) Quantity Price =X,-X|=Y,-7Y
(in tons) (in 00 %)

9 67 12 3 4 12 9

10 53 6 -3 -10 30 9

11 72 11 2 9 18 4

12 64 8 -1 1 -1 1
Total 27, 2.X, 2x; Zy,- iny,- le_z
n=12 = 756 = 108 =0 =0 = 156 |= 48

=63 -325x9
=63 — 2925 = 33.75
Thus the estimated supply function is

~ ~

Y=a+pX

or, ¥ =3375+ 325X

2

Here we see ¢ > 0 and [3 > 0. This means that there is a direct positive
relation between supply and price. The intercept of the supply function is positive
here. Hence our results are consistent with the theory.
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4. Find the value of R? from the following information and comment.

" "
D x,y; =3347.60, Y x7 =604.80, Y y7 =19837, # = 20 where x; = X; - ¥ and

it
=1 i=1 =1

yi=Y, - Y
Solution :
A2 I 5 n
B zxf R fo}’f
Since R? = fl where =21
2 < 2
2}’; zxr
=1 i=1
_ -2
H
xX. V.
. 21 Y
- i
2%
| =l i
_ (334?‘.60)2
604.80
— (554 = 30.69
22
BY x}
Now R2 — =l

2 ¥
Yy 7
i=1

_ 30.69x604.80 _ 18561312 _ gac
19837 19837 70

~ R? =0935

This suggests that 93.5 per cent of the sample observations of ¥ can be
attributed to the varations of the fitted value of ¥ 1e, ¥; or we say that our
regression line fits the given data well
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Thus R? measures the proportion of variations in the dependent variable that
is explained by the independent variable.

5. A sample of 20 observations corresponding to the regression model ¥; =
o + BX; + u; where u; is normally distributed with mean zero and unknown variance
o2, gives the following data :

" i
3 Y, =219 Y (¥, -Y) =869
i=1 i=l

i(XI. ~ X )Y, -¥)=106 4

i=1

]
Y X, =1862
i=1

n
E(X:’ —X)? =2154, n = 20. Obtain the usual regression results.
i=1

Solution : On the basis of the given information we have to fit a linear relation
between ! (dependent variable) and X (explanatory variable).

(i) Estimation of & and B :
xy, X=X -T)
We know that B = ’=:I = S

2% (X - Xy
i=1

i=1

ey
]

—

o)

o

Lﬁ
]

- 0494 and 4=V -8Y
215.4 a=Y-px

1.095 — 0,494 x 931
1.095 — 4.60 = -3.505

[

Z}f‘ " X

where y = =1 =%=1_095 and Y:E?_;=M=9_31
i=1

H
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Thus we have & = —3.505 and ﬁ = 0.494 and our estimated regression line

is ¥i=G+BX, =¥ =-3.503+0494X,

Estimation of variances :

Sl
=1 and Var(ﬁ)= o

"

3]
”2 xf 2 xf
L =l i=l

Here we see that 0‘3 is not known and hence we replace it by its unbiased

We know that, Var(&)=o02

i
. ~ 2 _ 2
estimator G2 =Y e? /n-2
i=1

n
2 X7 52

Thus we have, Var(&)=62-=L— and Var(f)= 2

i

"
ny x? > x?
i=1

i i

F
Again, we know that Y e = y7 - x}
i=1 =1 =1
H

s et = 869 — (0.494) x 215.4

i=l

= 869 — 5256 = 3434

F
Now, 62=Ye? in-2 = 233%=32.34 -1 908
i=1

i i H F _
where Y37 =Y (-7 and 2% =2 (X,~X)"
i=l =1 i=1 -1

o -
2 X7
i=1

#
HZ xf
| =] _

_1.908x1948.022 _ o gy

Now, Var (g) =62 20%2154
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n _ n —
We have, 3'(x,-X)?=2154 o, Y x?_nX’ =2154
i=1 i=l

" —
or, ¥ X2 =2154+nX" = 2154420 % (9.3)

i=1

= 2154 + 1733.522

= 1948.922. We have put this value to determine Var (o).
~ Var () = 08631

Similarly, Var (§) = 5~ 5154 = 0.0089

Now SE(a) = /Var(&) =+0.8631 = 0.929
SE(B) = JVar(§)=+0.0089 = 0.094

Construction of confidence intervals :

Now we like to set up a confidence interval for « and 8 at (a) P = 095
(e, 5% level of significance) and (b) P = 0.99 (e, 1% level of significance)

In other words, we like to find the value of ‘t” that cuts off (a) 0.025 and
(b) 0.005 of the area at the tail end of the distribution on both sides. From table
value : 10,025, n—2=10‘025, 18 = 2.101 and fo.025, ??—2=l‘0'025_, 18 = 2878

Therefore 95% confidence internal for o are : & 405, #—2 SE(@) ie,
Pla —thps n -2 SE(a) S 0 £ @ + tyg25, 7 =2 SE(&r ) = 0.95 and 99% confidence
interval for o are © @& % #5005, 7 —2 SE(&). ie, P[Q — fpgos -2 SE((1) € «
< o + fhpos. 7-2 SE(@)] = 0.99

Therefore 95% confidence interval for o would be : a =+ #0s, #—2 SE(Q).

= —3.505 £ 2.101 x 0.929



32 NSOU e PGEC-IX

or, —3.505+ 19518

Similarly, 99% confidence interval for « would be :
-3.505+2878 x0.929
or, —3.505 £ 2.6736

Similarly 95% confidence interval of B are :

B = foo2s, 7 — 2 SE(B)

ie, P[B — tooos, m — 2 SE(B) £ B< B + o025, # — 2 SE(B)]
= (95

m~

and 99% confidence interval for f§ are : B % f500s, # — 2 SE( ﬁ)

ie, P[B — tooos, m — 2 SE(B) S B < B + togoss » — 2 SE(B)]
= (.99

Thus 95% confidence interval for § would be :
B £ tooxs, n—2 SE(f)

or, 0.494 = 2,101 x 0.494
or, 0.494 £ 0.1974

where § = 0.494 and

fo.005, H— 2 = fog2s, 18
= 2.101

SE () = 0.094

Hypothesis testing : Suppose we like to test H, = 8 = 0 against the alternative
H, - B # 0 Now on the basis of the given sample H, : 8 = 0 will be rejected

~

— (observed

at 5% level of significance if |#,,| =
SE(B)

g 10_025, n-2 (table Value)

and will be accepted otherwise,

-~

B _ 0494
SE(B) 0094 = 5255 (where n = 20)

Here ¢, , =
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Thus we see that, | £, 5| = 5.255> f;05, 18 (=2.101) and hence H, : § = 0
is rejected (alternative H; : 8 = 0 is accepted) at 5% level of significance. So,
the hypothesis of no relationship between X and I is to be rejected at 5% level

of significance. Similarly, it can be tested for 1% level of significance.

2.9 Summary

Economic relationships are mainly of two types as discussed in this chapter-
deterministic relationships and stochastic relationships. Deterministic relationships
are those relationships where for a given value of the independent variable there
exists a definite value of the dependent variable whereas stochastic relationships
are those where for each value of the independent variable there exists a probability
distribution of the value of the dependent variable. The simplest form of stochastic
relation between two economic variables is given by ¥; = o + BX; + u; where
Y is the dependent variable, X is the independent variable, o and 3 are regression
parameters, # is the disturbance term, i1 represents the number of observations and
n 1s the sample size. This relationship is called Classical Linear Regression Model
if it satisfies some assumptions like parameters are linearly related, probability
distribution of the distrubance term is normal ie., mean is zero and variance is
constant, different error terms are independently distributed, disturbance term is
independent with explanatory variables, explanatory variables are independent to
each other, number of observations must be greater than the number of parameters
to be estimated and the model is correctly specified. The most popular method
of estimating the regression parameters of the CLRM is the method of least squares.
Lastly, the properties of the OLS estimators state that the OLS estimators are the
BLUE i.e., best, linear and unbiased estimators.

2.10 Exercise

Short Answer Type Questions :
1. State true or false :

{a) Deterministic relationship breaks down if the ceteris paribus assumption
is relaxed.

(b) The probability distribution of the disturbance term is such that its mean
is zero in the Classical Linear Regression Model.



NSOU e PGEC-IX

2. Choose the correct alternative :

(a)

(b)

The relationship between two variables say X and Y is said to be
if for each value of the independent variable X there exists a probability
distribution of the values of the dependent variable Y.

(1) Deterministic

() Stochastic

(1) Non-stochastic
(iv) None of the above

The QLS estimators of ¢ and B in a two-variable CLRM satisfies the
property of

(1) Linearity
(i) Unbiasedness
(i) Minimum variance

(iv) All of the above

3. Fill in the blanks :

(a)
(b)

The OLS estimate of « in a 2-variable CLRM is given by
The OLS estimate of 8 in a 2-variable CLRM is given by

4. What i1s Gauss-Markov theorem on least squares?

5. What are the properties of OLS estimates ?

Medium Answer Type Questions :

1. Show that the regression coefficient (ﬁ) is linear.

2. Prove that the intercept estimate (@) is linear.

3. State the assumptions of classical linear regression model

4. Write a short note on ordinary least square method.

Long Answer Type Questions :

1. State and explain the assumptions of a classical linear regression model.

2. Describe briefly the method of least squares for estimating the regression
parameters in a two-variable CLRM.
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State and prove the properties of the least square estimators in a two-variable
CLRM.

State and prove the Gauss Markov Least Square Theorem with reference
to CLRM.
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3.1 Objectives

Reading this chapter, students will get an idea about
® Estimation technique for more than two variables or GLM

® BLUE property of regression coeflicient

56
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e Log likelihood estimation
e Testing of hypothesis

@ Prediction of regressand

3.2 Introduction

The two-variable model discussed in the previous chapter is somewhat
inadequate for estimation. In the two-variable model we have taken only one
explanatory variable. In case of more than one explanatory variable or independent
variable this process will not work at all. The dependent variable which is in
consideration (suppose quantity demanded) may depend on so many factors (like
income of the consumer, own price of the commaodity, price of related goods, etc.)
but not on a single factor. So to involve all those independent variables in the
model of estimation we have to extend the two-variable classical linear regression
model. So in this chapter we are going to add more explanatory variables or
regressors on which the explained variable or regressand depends. This type of
estimation is called ‘Multiple Regression Analysis’ and the econometric model is
called ‘General Linear Model’. The simplest form of multiple-regression model is
the three-variable regression model where there is one dependent variable and two
independent variables. We should note one important thing that in this chapter we
will analyze only linear regression model ie., linear in parameters but, may or
may not be linear in variables.

3.3 General Model Specification

k4

Let us consider ‘k’ number of variables, where there are (k — 1) explanatory
variables like X5, Xj;.....X); and one explained variable ¥; So the regression
equation can be written as : ¥; = B + BXy; + BN + . BiXy +

Or, in matrix from, ¥ = X + 4 where, ‘&’ is the disturbance term, ‘Y’ is
the explained variable, X’ is the explanatory variable and ‘#’ is the parameter.

3.4 Assumptions

e Zero mean value for u, i.e, E(w) = 0
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® Fuu) = o%l,, ie., there is no problem of autocorrelation and
heteroscedasticity in the model.

® Set X remains fixed for a given sample, 1.e, X is non-stochastic.

@ Rank of X = p(X) =k <n

@ Here & denotes the number of parameters and n denotes the number of
observation. So, number of observation must be greater than the number
of parameters to be estimated. Otherwise parameters cannot be estimated
using OLS. Further, p(X) = %, implies that the columns of X are independent
to each other, i.e., there is no multicollinearity problem.

® There is no autocorrelation between two disturbance terms. So,
cov (u;, u;) = 0 for all i # j
or, E(u, ) = 0 for all i # j

® Zero covariance between X; and #;, i.e, X; and w; are independent to each
other, or, cov (X, u;) = 0

@ There is no multicollinearity problem, or,
cov(X;, X)) = 0

® Model is correctly specified. So, there is no specification error.

3.5 Estimation of Parameters

We can start with general regression equation in matrix form. Then we can
specify the regression model depending on the number of variables.

3.5.1 Estimation of Parameters for General Regression Equation

The model used for estimation is ¥ = Xf3 + u, where the order of ¥ matrix
is #*1, order of X is w*k, order of B is k*1 and order of # is n*1.

E(Y) = E(XB) + E(u)

of, ¥ = XB

This is the estimated regression equation.

So the error term (e) = Y—?:Y—XB
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Applying OLS method we shall have to minimize the sum of square values

€

&

of errors, So, 2” e? =[elez———en] =ee = (Y - XBY (Y-XB)

i=l i

€y

or, e = Y'Y - 2B°XY + B'XXB.

m~

For OLS, ¢’e is to be minimized with respect to .

Minimization requires a(aeAe) = 2XY + 2XX ﬁ =0

or, YXB = XY
or, B = (XXXY .. (1)
This is the OLS estimator of f.
3.5.2 Estimation of Parameters for Three-variable Regression Equation

The simplest form of multiple regression equation (for more than two variables)
is three variable regression equation which can be specified as follows :

Y, = ﬁl + ﬁZXZ.i + ﬁ3X3i+ H;

or, E(Y})) = B + BXy; + BX;; (given the assumptuion of multiple regression
model)

o, ¥i =B+ 5o+ B X, and V=545, X2 +B, X
Subtracting we have, :{;i = 32 Xy, + ﬁ3 x,, (variables are in deviational form)
So, error ¢, =7, _¥; =(7, _V)-(¥; _}7})=yi -5

= ;= Byxy; +B3xs;
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1] 2 _ ¥ 3 5 2
So. X = Qi 0y = Boxai + By

For minimization or error term (applying OLS) ZL ef

~

B, requires

2 2
02 g o P21 g
d, d8;
Again, these two equations can be rewritten as
By$yy + B38y; =5, and Bysys + sz =355,
_ 2
Where, s; = Zixi . i=23

su= X xy, k#1=2, 3, Sy = Zr‘xﬁ'}’f

So, by applying Cramer’s rule we have

S3y S23
ﬁ sy 533 82,833 —2353,,
27 - 2
S22 523 823833 — 833
823 933
B = S33 0 33y S;plsy, —85,83
3= - 2
S22 523 823833 — 833
833 833

and Bl =I_/—ﬁ2YQ —B3Y3

with respect f)", and
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3.6 BLUE Property of B

Now we have to see whether ﬁ is Best, Linear, Unbaised Estimator (BLUE)
or not. Here B is the OLS estimator of f.

From equation (1) we have, ﬁ = (X'X)"! XY which is the linear function
of ¥.

From the above equation we can write
B= XXy X (XB+ w
= XX XOB + (XX Xu
or, § =B+ XX Xu
or, (B) = B+ (XX (XYE()
or, E(f) = p
S0, we can say that ﬁ is an unbiased estimator of f.

Now we have to calculate the variance of ﬁ . Then we have to prove that variance
of ﬁ is minimum than the variance of any other unbiased estimator of £

Now, the variance matrix of B is denoted by

var (B) = E[(B- BB~ P

We know that § = B + (X'X) X'

o, (B — B = X' Xu

or, (- B = v'X (XX)"!

So, var(#) = E [(X'X) ' X'u * u’ X(X'X) ]

= (XX XE (u* ) X (XX = & (X X' XX (XX)!
or, var() = o*(XX)"!

This 1s the variance of ﬁ . Now we have to prove that this variance is minimum
than the variance of any other unbiased estimator of f.
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Let us assume that another linear unbiased estimator of f is b, where,
b = d'Y for any vector a. So b is a linear function of ¥. Further b = a’Y = a’(XB

+ u)
So, b = dXB + du
or, E(b) = aXB + o'E(u)
or, E(b) = dXPB
Now if &¢’X = 1, we can write E(h) =
Therefore » will be unbaised if and only if ¢’X = 1.
Now variance of & can be rewritten as
var(b) = E[(b — B) (b — P)']
= E[(d’w)'a)] = dFlu'la = o*d’a
Now, var(b) - var(B)
= da - HXX)!
= o’d'a - FdX XXy ' Xa
= Fd[1-X(X Xy X)a
= ¢?a’Ma where M = 1 - X(X' X)X’
‘M’ matrix 15 a symmetrical, idempotent and a positive semi-definite matrix.
As ‘M is a positive semi-definite matrix, aMa =0
So, var(bh) — var(ﬁ) 20
or, var (b) = var ()

So, B is BLUE.

3.7 Estimation of ¢?

We want to estimate o? in GLM, so that this estimator becomes
unbiased.



NSOU e PGEC-IX 63

Let &2 be the unbiased estimator of ¢ in GLM, ie. E(§?) = &

Now by definition e = ¥ — ¥ =Y- Xﬁ

or, ¢ = X + u — X(XXy' X (XB + u) [putting the value of ¥ and f]

or, ¢ = XB + u — XWX\ LXXB - X(XX)'Xu

or, e = X+ u - X - X(XXy X'u

or, ¢ = u — X(XX)! Xu

or, ¢ = [l — X(XX) X

or, ¢ = Mu where we have M = I - X(X' X)X

And, Y & = ee = (Mu)(Mu) = 'MMu = «'Mu [as M is idempotent matrix
MM = M]

So, 2. = w'l] - XXXy Xu

So, E(e’e) = E(u'n) r [I - X(XXyX]

= & [tr(1,)) - tr (X(X X)X}

= & [n- 1 {(X X)X XY

= & [n-tr ()]

= o2 [n-k]
or, o2 = —i(iz)

_ plee o pl 2
or, 0° E(n—k) E[n—k]

or, 07 = E(&ﬂ:E[E}

n—k

This is the unbiased estimator of &
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3.8 Maximum Likelihood Estimator

For maximum likelihood estimator (MLE) we additionally assume that, #
independently follows the normal distribution with zero mean and & variance. The

2
H;

pdf of u; is given as f{w;) = L, 2

The joint pdf of wy, wa, w3, ... w, is given as f(u, #s, U3, ... W) =
)y fluy .o fu,) = e 207
Fl) f s = (=]

]

Therefore, the likelihood function is L = (2rc?)™" f’2.e_ﬁ

We have defined our model as ¥ = X8 + u
o, u =Y - X8

So, w'u = (¥ — FX)Y - XP)

or, wu =YY - 20XY + fFXXP

So the likelihood function reduces to

_(FT2BXTHRXAB)
L = (2n6%) " 2e 267

This has to be minimized with respect to § and ¢® where MLE estimate of
B is similar to the case of OLS method. So the MLE of B can be written as

B=B=(xx)y'Xx7
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n

So, B is BLUE.

However MLE estimate of o2 will be different which is derived below :

(L) = -4 fn(zzr)—%ln(oz)—ﬁ(ﬁef)

Differentiating with respect to 6> we have dnl) __ n_, L e =0
do? 26° 207
2
e:
SO, 5’2 = :
n

But this estimator is not unbaised whereas OLS estimator of & is unbiased.

3.9 Testing of Hypothesis

3.9.1. Point Estimation
In GLM E(§) = B and var(B) = A(XX)!

So, for any particular B, say B, E(f,) = p; and var (B) = 6’2611; where a;
is the j-th diagonal element of (X’X) 1
_2% (e

So, the standard error of ;= SE(f,) = 0 ja;. where, 6% = oy A

~

ﬁj_ﬁ

S /
~ n-k
Oy

Here the null hypothesis is Hy © ; = O aganist the alternative H, : f§; # 0.

Therefore the test statistic is

~

B

Under H, the test statistic is : #, = —
O

If |z, > I%,,,_k then H, is rejected ie, f; is statistically significant or

significantly different from zero, otherwise H, is accepted.
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3.9.2 Interval Estimation
Interval estimation of ﬁj is derived as follows :

—t SEst
PI: %,n—k %,n—k]zl_a

where, o is the level of significance.

A

}<f =]—«

or, P —t_n LS 0..\/_
or, P[( B _J,_;G\/_) _( %’!’_k&\/a_j-l-ﬁ\f]]:l—oc

So, B,xt k&‘/aﬂ is the interval estimation of f;

1R
o

3.10 Prediction in GLLM

Now we want to predict the mean value or expected value of ¥ for given
Xk.(n+l)}a fori=n+1

value of X, say " = {1, Xopu1y X3 i1y

So, E(Y) = XB
Here for given values of X; E(Y) = ¢’

We know that if § is BLUE of f then ¢’$ will also be the BLUE of ¢'8
, the predictor

Therefore ¢ ﬁ is the best linear unbiased predictor of ¢’f ie

is ¥ CB which is the best linear unbaised point predictor with wvariance

o2 (X Xy le.

We can also derive the interval predictor as follows
We have B ~N[B, G3(XX)]
or, ¢'B ~N[¢'B, (X' Xy c]

c’ﬁ—c’ﬁ

So, we can write ~N (0,1)
oJe' (X XYy le
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c’ﬁ—c’ﬁ .
T
syfe (XX e "

So,

n—k n—-=k

2
" e; !
Where 52=(:1v'2=z‘I ee

c’ﬁ—c’ﬁ
So, P —f < <t
%,n—k s }CI(XIX')—I ¢ %,n—k

Therefore the interval predictor is :

C’Bie‘a }S\/C'(X;Y)_IC

L Fi
29

=]—oc

3.11 Summary

In a two-variable regression model we can take one explanatory variable. So
for more than one explanatory variable this process will not work. For the estimation
of regression model involving more than one explanatory wvariable GLM is
introduced. This type of estimation 1s called multiple regression analysis and the
econometric model is called general linear model (GLM). Here we have estimated
the general model and also the simplest form of multiple-regression model i.e.,
the three-variable regression model with one dependent variable and two independent
variables. These models are linear in parameters. Given the assumptions of the model
(which are similar to the assumptions of CLRM) we have estimated the parameters
following OLS method. We have also estimated the regression parameters following
the technique of MLE (maximum likelihood estimator). We have estimated the
variance in GLM and derived the unbiased estimator of the variance. Comparing
the OLS technique and the MLE technique we have found that regression parameter
is the Best Linear Unbaised Estimator in both the processes. But the MLE estimate
of variance is different from the OLS estimate. We have found that MLE estimator
of variance is not unbaised whereas the OLS estimator of variance is unbiased.
Lastly, we have predicted the mean value of the dependent variable (¥), given the
value of explanatory variable (X) in GLM.
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3.12 FExercise

Short Answer Type Questions :
(a) Choose the correct answer :
(i) In GLM variance of the disturbance term is considered as
(1) Zero
(2) One
(3) Not equal to zero

(4) Greater than one

(i) B will be the unbiased estimator of § if
() E(B) =B
) E(B) < B
GyE(B)> B

4) E(B) = B
(b) Fill in the blanks :
(i) Number of observations must be than the number of

parameters to be estimated.

(i) If || > 2, . then f;, the regression coefficient is
?_J.‘—

{1ii) Statistically and the null hypothesis 15 rejected.
(c) Identify whether the statements are true or false :
(@) If cov(X,, X)) = O then the multicollinearity problem is present.
(b) Estimation in GLM 1s done by applying OLS method.
(d) What is multiple regression analysis?
(e) What is general linear model?
(f) Specify a general linear regression model.

(g) What is meant by BLUE of an estimate?
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Medium Answer Type Questions :
1. State the assumptions of GLM.
2. What is point estimation?
3. What is interval estimation?
Long Answer Type Questions :
(a) What are the assumptions under GLM?

(b) Consider a model = Xf8 + u, where the order of ¥ matrix is #*1, order
of X is n*k, orcler of b is k*1 and order of # 1s n*1. The estimated regression
equation is ¥=x [3 Prove that B is BLUE.

(¢) Consider a three-variable regression equation ¥; = B+ Xy, + BXs; + u;
Estimate the parameters.

(d) How can you predict the expected value of dependent variable, given the
value of explanatory variable in GLM?
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4.1 Objectives

Reading this chapter, students will get an idea about

Meaning of Multicollinearity
Sources of Multicollinearity
Consequences of Multicollinearity
Detection of Multicollinearity

Solution of Multicollinearity

4.2 Introduction

Multicollinearity problem was first identified by Ragnar Frisch. Collinearity
means linear relationship among explanatory variables and multicollinearity means
a number of linear relations among explanatory variables. But broadly in econometrics,
multicollinearity implies either single or multiple linear relations among explanatory

70
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variables. In classical linear regression model, it is assumed that explanatory
variables are independent to each other. But in reality if they are found to be linearly
dependent to each other, we get this multicollinearity problem. Let us assume that

the explanatory variables are xy, X, ............. Xp. If Opxp + Ooxy + ... + Oxp =
0 for any d; # 0 we can say that there is a multicollinearity problem. Let us assume
. 3, 5, ..
that 8, # O then we can write, x, = _S_xl S _S_X"‘ Le, X, is linearly
e
2 2

dependent on other explanatory variables. This dependence is prefect. So there exists
a multicollinearity problem. We further assume € to be any random variable for

which we get the following relationship : x;, = —ixl e — =X -=

where also x, is linearly dependent on other explanatory variables. This dependence
is however not perfect. Yet there still exists multicollinearity. Therefore it can be
inferred that multicollinearity implies either perfect or near perfect relationship
among explanatory variables.

4.3 Sources of Multicollinearity

Multicollinearity may arise due to a number of reasons which are noted as
follows :

(i) Model Specification : If any explanatory variable is included in different
polynomial forms in the regression model, then multicollinearity problem
may arise. For example if we consider the model ¥, = 8, + B.X,, + B3
th + €, then X5, and X%t may be correlated.

(ii) Overdependence : If the number of explanatory variables is relatively more
than the number of observations, then the model is known as overdependent
and there we get the problem of multicollinearity. For instance, medical
research data may be collected on a number of parameters from a limited
number of patients and there we may get the problem of multicollinearity.

(iii) Data collection : If data are collected from a limited range of samples,
then multicollinearity problem is very likely to be observed.

(iv) Parametric constraint : In some studies, variables are related by definition

71
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i.e, there exists constraints amongst wvariables and that leads to
multicollinearity problem. For example, if we consider a regression analysis
where we are estimating electricity bill on income level and expenditure
in residential house, then income and expenditure in residential house are
positively related on the presumption that rich people reside in bigger
houses.

4.4 Consequences of Multicollinearity

In case of perfect dependence of explanatory variables i.e., if the multicollinearity
problem is perfect, we cannot compute (X’X)~! and hence we cannot estimate ﬁ
So, the regression parameters will remain indeterminate. However, if multicollinearity
problem is not perfect, but the explanatory variables are strongly correlated, then
the following consequences may arise :

@ The precision level will fall. The effect of one independent variable is
entangled with the effect of other independent variables. The variance of
the estimator and the co variance of the estimators will increase with the
increase in degree of dependence of explanatory variables.

e If there is multicollinearity problem, then the estimates will be very
sensitive to the size of the sample. By increasing observation or by deleting
one observation one can change the magnitude and sign of the estimates.

@ The estimate of sample variance would be affected in the presence of
multicollineanty i.e., the inferences would be erroneous.

The main consequence of multicollinearity problem is that the precision level
will fall 1.e., errors in estimation will increase due to increase in collinearity of
independent variables. The co-variance of the errors of estimates will also increase
here. We can establish this with the help of an example :

Suppose we consider a model ¥, = B, + BX5, + B33, = u,
In deviational form the model is written as

Yo = Byt Byxs tow — @
Here we assume that x,, and x;, are correlated as follows

X3 = 000y T VI
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To establish o as their correlation coefficient, we assume that ), X3, = z x5 =1

and th =0, thxgl, =0

The correlation coeflicient between x,, and x3;, is given by

Covariance(x,,, x3, )

Jvar(xy, yvar (x;, )

_ 2X2:X3r

X3 Y

_ Eerx&f
1

= mexsw
- zxZI(aer-"Ut)
= 0 Y X5, + D %0,

= 1 +0

= O

Y mexy]:[l a}

Y =
SO’( X) {zxmxs‘r ZX:%;: a 1

And

o1 AdI(XX) ! [1 —o:]
XX) = =
(X%) XXl 1-¢2

The wvariance-covariance matrix is
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Var (

=
|
Q
t
3
>
L
Il
Q
[ 2%
[ %]
1
|
{
| I

So, Var(B2)=62 1 2 =Var(ﬁ3)

As o increases. i.e., as degree of multicollinearity increases, variance of f3,

and variance of B; also increase i.e., the error of estimate will increase. Hence

the precision level will fall due to increase in degree of multicollinearity. Similarly,
covariance will also increase due to increase in degree of multicollinearity.

4.5 Detection of Multicollinearity

It 1s to be noted that multicollinearity is a problem of sample (not of population)
and its degree is the main concern, not its existence It is also to be noted that
there is no single method for detection of Multicollinearity. Rather, there are few
popular methods used by econometricians for the detection of multicollinearity. We
will discuss these methods one by one in this section as follows :

@ Value of R? : If it is found that the overall R? is very high and significant,
but individual regression parameters are mostly insignificant then that gives
us a signal of the existence of high multicollinearity problem where
individual effects of explanatory variables cannot be disentangled.

® Value of zero order correlation coefficient : Sometimes simple product-
moment or zero-order correlation coefficient 1s used for detecting
multicollinearity. If the zero-order correlation coefficient is found to be
high and significant then that signifies the existence of multicollinearity
problem. Here product-moment correlation coefficients are calculated for
every pair of independent variables. But this method is applicable only
when there are two explanatory variables. Further, this method is sufficient
but not necessary for detecting multicollinearity problem.

e Partial correlation coefficient : Farrar and Glauber argued that if there
are more than two independent variables, then partial correlation coefficient
should be used for detecting multicollinearity problem. Let us assume that
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n

there are four independent variables, x|, x5, x3 and x,;. The partial correlation
coeflicients are ry334, #1324, Flanz, and so on. If any of these partial
correlation coefficients is found to be significant, it can be said that there
is multicollinearity problem. But this technique has also been criticised
by econometricians because often it fails to detect multicollinearity in
reality.

e Auxillary regression method : It is more powerful to detect multicollinearity
compared to the correlation methods. Here auxillary regressions are fitted
taking all explanatory variables into account. More specifically, in auxillary
regression, one explanatory variable is regress and on remaining explanatory
variables at a time and its coeflicient of determination is calculated. Let
the Auxillary Regression be X, f(X), X5, X5, ... Xu1, Xip, ... X)) and

its coeflicient of determination is Rf. If Rf is found to be significant
and high we can say that there is Multicollinearity. Klien prescribed a rule
of thumb here : If any Rl? > R? je., overall coefficient of determination

obtained from regression of y on x;’s, it can be said that there is
multicollinearity problem.

® Variance Inflation Factor test : Another popularly used test to detect
multicollinearity is Variance Inflation Factor test or VIF test. In this method,

(ViF); = a IR,Q) where Rf is the coeflicient of determination obtained
from regressing X; on remaining explanatory variables. Here also rule of
thumb says that if any J7F is more than 10 we can say that there is
multicollinearity problem.

® Condition number test (CN test) : In the case of FIF we get multiple
tests for multiple explanatory variables. But to get a single test, Condition
number test can be applied. So, CN test is more preferable to VIF test
and that’s why it is used widely. For the matrix, (X'X), eigen values are
computed. Let 8, be the highest eigen value and &, be the lowest engien

5, 3,

value, then condition number = — and CA index = 5.
2

6,
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Here, the rule of thumb is that if CN index lies between 10 and 30 we
can say that there is multicollinearity and if CN index > 30 we can say
that there 1s severe multicollinearity.

4.6 Solution of Multicollinearity Problem

The solution techniques applied for solving the problem of multicollinearity
can be broadly classified into two categories :

® Preliminary techniques
® Specialised solutions

Preliminary techniques of solving the multicollinearity problem are started as
follows :

® Dropping of variables
® Transformation of variables
e Change of observations

Under specialised solutions, we get mainly two techniques for solving
multicollinearity problem. They are :

® Ridge regression technique
@ Principal Component Analysis
These techniques of solving Multicollinearity problem are discussed as follows :

® Dropping of variables : If the explanatory variables are found to be
correlated among themselves, then the wvariable which is causing
multicollinearity and which is not very much relevant, that variable can
be dropped from the regression analysis to solve the multicollinearity
problem. For instance, in estimating consumption function, two independent
variables are income and wealth which are correlated. To solve the
multicollinearity problem we can drop wealth from the regression analysis
considering it less essential than income.

o Transformation of variables : In time series data, trend component may
cause multicollinearity among all the variables. If this trend component
1s eliminated, then the multicollinearity problem can be avoided. For that,
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the variables may be transformed in their difference forms (not in the level
form) in the regression analysis Suppose the regression is given by Y, =
a+ bt So, ¥,y = a+ b(t-1). Subtracting the second equation from the
first we get, AY, = b 1e, here trend element is eliminated and original
variables are taken.

® Change of observations : Multicollinearity is a sample problem and not
a problem of population. So, it can be avoided by changing the size of
the sample 1.e., by increasing the number of observations. For that the size
of the sample can be increased (if possible), cross section data can be
combined with time series data i.e., by using pooled data the problem of
multicollinearity can be solved. For example, from budget study one can
establish relationship between wealth and consumption and to determine
relationship between income and consumption, time series data can be used.

¢ Ridge regression amalysis : To avoid multicollinearity i.e, for getting
lower values of correlation coefficient some constant say A can be added
to variances and thus the multicollinearity problem can be solved from
regression analysis. This is a mechanical procedure which has been
rationalised by econometricians considering different variants of ridge
regression. One such variant is ridge regression with prior information. Let
the model be

Vi = a+ BXy, + BXy + u

where X, and X, are found to be highly correlated.

We know that ﬁf +}322 = ¢ (any constant).

Here for OLS we have to minimise

L= 3 +Ae—f - B3]
= Z(Yi_&_BIXli_B2X2r‘)2+l|:c_3;_ﬁ§:|

= Zi(y:, - Bl Xy _Bzng )2 +A I:c _ ﬁf - Ei :I [in deviational form]

It is to be minimised with respect to ﬁl, ﬁz and A.

For minimisation,
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OL _ 3 (v, — By — By )31y — 2B, =0

38,
of, Sy1=(S1 + AP +SuBs o (1)
Similarly,
L - - -
56? = _22(%‘ - By ‘52x25)x2r‘ ~24B,=0
or, Sy2 = B] (SIZ) + B2(S12 + l) (2)

Solving (1) and (2), we get estimated values of parameters from ridge
regression. Here, A can be solved from the constraint. In ridge regression,
estimators may be biased but they have lowered mean square errors.

Principal component analysis : It is the most widely used method
for solving the problem of multicollinearity. We can explain the
principal component analysis using a suitable example. Let the model be
Vi= o+ Xy + Boo + By + BlXu + w0

Among the explanatory variables, suppose X}, X,, X; are correlated among
themselves. Those correlated variables are to be clubbed to get principal
component of those variables. For clubbing, zero order correlation coeflicients
are to be computed of X, X5, X3 and to be arranged in the following matrix
form :

X X X5 X Row totals
X r=1 Fi2 Fi3 ?rlf
X 721 rp = F23 g«'ﬁf
X3 31 F3 F33 = 1 g‘r‘”
Column totals ;rﬂ ;’}2 ;’?3 Zzilr;f
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Next, row totals and grand totals are to be computed and the following
formulae are to be applied.

20
22t

a1=

DYV
Z;Zj’}}'

)

a __Z”s;
=
Z;‘ZJ{’}}'

And py; = ax;; + axxy + azxy; 1s the first principal component derived
from assimilation of 3 variables x;, x; and x3; in their standardisded forms.
Likewise, other principal components are calculated. For instance, for
second principal components, new correlation matrix is formed where new
correlation is equal to (old correlation — product of row and column totals)
ie, ry* = ry - 7y * rq). In a similar manner the second principal
component 1s calculated ie., py. It i1s to be noted that the number of
principal components is equal to the number of variables clubbed and those
principal components are selected for regression whose latent root or eigen
a’+a3+a3

value is greater than one where eigen value = f’ Principal

component analysis is applied only when variables are homogeneous and
they carry economic meaning.

4.7 Summary

If the assumption of independence of explanatory variables in the Classical
Linear Regression Model is violated, then the problem of multicollinearity arises.
This problem was first identified by Ragnar Frisch. It may arise in econometric
models from improper model specification, limited sample size or if there is any
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parametric constraint. The presence of multicollinearity leads to a fall in precision
level, standard errors of estimate will be large and inferences will be erroneous
and the estimates will be very sensitive to the size of the sample. It can be detected
by a very high value of R? but none of the regression coefficients being significant
or by high value of zero order correlation coefficient. It is also tested by auxillary
regression method, variance inflation factor test or by condition number test. The
problem of multicollinearity can be solved by either dropping or transformation
of some variables, or there are some sophisticated techniques like ridge regression
analysis or principal component analysis which are used to solve the problem of
multicollinearity.

4.8 Exercise

Short Answer Type Questions :
(1) Choose the correct answer :
(a) Which of the following is a test to detect multicollinearity?
(1) CN test
(i) Ridge regression analysis
(i) Principal Component Analysis
(iv) Durbin-Watson test
(b) A sure way of removing multicollinearity from the model is
(1) Work with panel data
(1) Drop variables that cause multicollinearity in the first place
() Transform the variables by first differencing them
(iv) Obtaining additional sample data
(2) Identify whether the statements are True or False
(a) Multicollinearity is essentially a sample phenomenon
(b) The precision level will fall due to the presence of multicollinearity
(3) Fill in the blanks

(a) In a regression model ¥; = 3 + B,X,;, + B;X5; + u;, F test is seen to
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satistically significant at less than 5 percent level of singinifcance, but
the coefficients are seen to be statistically insignificant. This means that
the variables are

(b) 15 the most widely used technique to solve the problem of
multicollinearity.

Medium Answer Type Questions :
1. Mention the main sources of multicollinearity problem.

2. What are the major consequences of multicollinearity in a linear regression
model?

3. Who did first identify the problem of multicollinearity?
4. What 1s multicollinearity?
Long Answer Type Questions :

1. What do you mean by the problem of multicollinearity ? Discuss the sources
from which multicollinearity may arise and explain the various consequences
of multicollinearity.

2. How can the problem of multicollinearity be detected ? Discuss different
ways to solve the problem of multicollinearity.
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5.1 Objectives

Reading this chapter, students will get an idea about
® Meaning of heteroscedasticity

® Source of heteroscedasticity

® Consequences of heteroscedasticity

® Detection of heteroscedasticity

® Remedial measures of heteroscedasticity
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5.2 Introduction

If we drop the assumption of constant variance of the disturbance term, ie.,
homoscedasticity in the population regression function from the CLRM then the
variance of the disturbance term becomes heteroscedastic. In this chapter we will
examine the vahdity of this assumption and also we will find out what happens
if the assumption of homoscedasticity is not fulfilled.

5.3 Meaning of Heteroscedasticity

Homoscedasticity means equal spread. When variances of the disturbance term
‘w are equal then it is known as homoscedasticity. But when variances of the
disturbance term ‘u’ are different then it i1s known as heteroscedasticity. Therefore

homoscedasticity means var (#;) = o but heteroscedasticity means var (#;) = c)'i2

which 1s different of different 7. It is postulated that O'i2 is a function of X, i.e.,

o = AX). As X; changes, c? also changes.

5.4 Sources of Heteroscedasticity

Heteroscedasticity arises due to different reasons which are mentioned
below :

® Error learning model : With the process of acquiring experience or the
error learning process the workers will come nearer to efficiency and their
incorrectness will be less and less. So the variance will be lower. For
example, typing error will be less as the typist acquires more experience.

® Improvement in data processing technique : With the introduction of
computer and other sophisticated electronic devices, data processing
technique, has been improved enormously. With the improvement in data
processing technique we observed less error in data compilation and data
correction process. That leads to lowering the variance in disturbance term.
For example, heteroscedasticity 1s observed in studies related to banking
data where data processing technique is improving day-by-day.

23
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Presence of outlier in data : An outlier is an extreme observation whose
probability distribution is different from the probability distribution of other
observations, The outlier may occur due to drought, flood, war, famine,
etc. Due to the presence of outlier the variance of the disturbance term
will increase and that leads to heteroscedasticity problem.

Existence of discretionary income : Discretionary income is that part of
income which can be used by the individuals as per their desire. This
income 1is alternatively known as transitory income or the income from
‘windfall gain’. Due to the existence of this discretionary income, variation
in the human behavior is observed and that leads to the heteroscedasticity
problem in the model

Mis-specification error : In the specified regression model, all the relevant
variables may not be included. Some important variables may remain
omitted whose influence would be reflected in the disturbance term causing
the heteroscedasticity problem. For example, in a demand function, prices
of other goods or other variables may not be inserted and these omitted
variables will create more variance in the disturbance term.

Incorrect data transformation or functional form : Let us suppose that
variation of the data will be lessened if the data are considered either in
ratio scale or in first difference form. Similarly, instead of original variables
if we estimate the log function, the variation in the data can be minimized.
Therefore, incorrect data transformation or the erroneous regression function
selection would lead to heteroscedasticity in the disturbance term.

Skewed distribution in data : In Economics there are number of variables
like income, consumption, saving, etc. whose distribution is skewed or
asymmetric in the society. Due to skewness in the distribution, every section
of the society cannot enjoy same type of freedom in their choices. Naturally,
for some people we get less information and for others we get more
variation in the resultant data and that leads to heteroscedasticity in the
problem.

5.5 Consequences of Heteroscedasticity

Following are the consequences of heteroscedasticity :
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n

® In the presence of heteroscedasticity, the OLS estimator of regression
parameter 1s still unbaised (consistent) but inefficient.

@ The OLS estimate of the variance of the estimator of regression parameter
is biased Consequently, the usual ¢, %2 and F tests cannot be efficiently
applied. We also face practical difficulty in applying hypothesis test under
changing variance of disturbance term.

Now we will prove the above mentioned consequences of heteroscedasticity.

Let us consider a model ¥; = BX; + u; ... (1)

where E(u;) = 0, E(u;, ;) = 0 and E (uf)= o2 ie., there is heteroscedasticity.

i

Applying OLS we have the estimator of j

s XX Y X (BX +u) EXH
IR T EC ¥

RIAD,
R

So OLS estimator is unbiased here.

or, E(ﬁ)=ﬁ+ = Bas E(w) = 0

2 2
Now the variance of 3=Var(ﬁ)=g(;§_ﬁ)2 =E[Zz}i;;r] - EXf‘-’f

Now we have to prove that this variance is not least, i.e, 3 is not efficient.

For this we now apply WLS (weighted least squares) estimation technique.

We assume that o' =0’z ; 2 where Z is any unknown variable. Now dividing
: X; Ju X,
each component of the model by Z;, we have =8+l =8" 4y
P y Z; 7z P77 B—+v;

1 I

To get WLS estimator, we have to apply OLS on the above equation.

35
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The WLS estimator of f is =

or, (ﬁ) = B, ie, WLS estimator is unbiased.

But variance of B=Var(ﬁ)=E(ﬁ—ﬁ)2 =F

var(ﬁ) E(ab) o
var(B) Y’ ¥5

oW,

N . X;
of, var(ﬁ) < var(f§) where Z—I = a;, XiZ; = by

]
So, B 1s mefficient.

Now we want to prove the second consequence i.e., estimated variance of §

is biased.

2 ) ) ) )
O~ and its estimated value is —Z

27 27

Under heteroscedasticity, var(g)=

So, the estimated variance of ﬁ under heteroscedasticity is % 1

I'ZXI?
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Now, consider ¥; = BX; + u; or, ¥ i= ﬁXF.
~ 2 " 2
So, X&f =X (r;~Fi] =Xui ~(B-p) LXF =RsS

13 62 202
So. BRSS) = T E(i7)-E(p-pf T x2 =2 EEXQEX’ i

So the estimated variance of ﬁ under heteroscedasticity is

RSS 1 _ XX Xoi-YXiel |

D AN R

This is different from the true variance of 3

So, the estimated variance is biased. The usual 7, %2 and F tests will give
us erroneous result.

5.6 Detection of Heteroscedasticity

There are different methods of detecting heteroscedasticity. The popular
methods are given below :

e Anscombe and Ramsey method
e White method
® Glejser method

These three methods are applied for small sample. But if the sample size is
large we can apply the following three methods.

e Likelihood Ratio test
e Goldfeld-Quandt test
@ Breusch-Pagan test

These methods are discussed below.
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(i) Anscombe and Ramsey Test :

First, using OLS method, residuals (e;) are computed and the residuals are
regressed on different forms of the predicted part of the explained variable such

k ~2 ~3 ~d
as Yi,Yi and so on. So we havee,=8+BY: +B Vi +B,YVi+e
where €~ iid(0, &°).

If any coeflicient of the above equation is found to be significant then there
is heteroscedasticity, otherwise there is homoscedasticity.

(ii) White Test :

Using OLS method, first the residuals are computed from the original regression
equation. Let the residual be denoted as e; Let us take the square of residual which
is to be regressed on different froms of explanatory variables. If there are three
explanatory variables X|, X5, X;, X1X5, X5X5, X\ X; and so on There are second
type of regression equation to be estimated is

= ot BXy; + BXy T BiXy + BilXiXa + BsX X + By + e
where €~ iid(0, ¢2).

If any coefficient of the above equation is found to be significant then there
is heteroscedasticity, otherwise there is homoscedasticity.

(iii) Glejser Test :
This test also belongs to the category of other two tests described above. In

all the three tests it i1s assumed that 0',-2= AZ;) for any value of Z. In Glejser test

also, original regression equation is estimated using OLS method and absolute value
of residual is computed. The absolute value of residual is then regressed on different
forms of explanatory variables as follows :

|ei|=a+in or, |ef|=a+% or, |e,.|=a+b X, etc.

If “»° is found to be significant in any case, then there is heteroscedasticity
otherwise there is homoscedasticity.
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These three tests are generally applied for small samples. If the sample size
is large we have to apply other tests of heteroscedasticity which is discussed below :

(i) Likelihood Ratio Test :

Using OLS method, original regression equation is estimated and residuals are
computed. Then the residuals are arranged according to the ascending order of
predicted value of Y. Next, rediduals are grouped in %4 groups. For each group
variance of the residual is estimated and for all groups taken together overall

variance is also estimated. Let &2 be the overall variance taking n observations
into account and 62 be the variance of residuals in the i-th group where i=1,

2, ...k and in each group there are #; observations such that 2n; = n. Next compute

)"

A as follows : A:]‘[L]—n
(6)
Here the test statistics is -2/ (A) ~ %%

If this test statistic is found to be significant then there is heteroscedasticity
otherwise the regression is free from heteroscedasticity problem.

(ii) Goldfield-Quandt Test :

Unlike likelihood ratio test, the whole sample is divided into equal three groups
in this type of test. If there are two residuals in deriving three groups, the first
and last observations are to be deleted. Likewise, if there is one residual then the
first observation is deleted. Before getting groups, observations are arranged in
ascending order of X values (explanatory variable). Middle group is ignored and
two separate regressions are to be estimated for the first and the last group. For

. . o . D
each regression, variance of the residual is estimated. The estimates are s° = n—_'
1

k

Ze’a%f

ny—k

2 _
and 55 =

2
" . . . &
Then the relevant test statistic for the variance ratio test 1s % ~ F k) (my -y
s ’
2
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If the test statistic is found to be significant then there is heteroscedasticity,
otherwise there is homoscedasticity.

(iii) Breusch-Pagan Test :

s,
In the Breusch-Pagan test the relevant test statistic is A = > ? 7 which follows
o}

x2, r being the number of explanatory variables in the regression equation used

= gverall estimated value of the

2
. . ~ e‘

for heteroscedasticity test. Here &2 =<
n

variance of disturbance term and s, is the explained sum of squares derived from
regression ef= 2y, 25 o ) where Z; may be x, e, Jx and so on. If A is found

to be statistically significant then there is heteroscedasticity, otherwise there is
homoscedasticity in the disurbance term.

5.7 Solutions of Heteroscedasticity Problem

We have two types of solution of heteroscedasticity problem. In one type, a
specific assumption is made regarding the form of heteroscedasticity. In another
type, no apriori assumption is made regarding the form of heteroscedasticity. The
first type is divided into two parts — one is WLS (weighted least square method)
and other is MLE method. Further, we have different variations of WLS method—
one-setp WLS, two-step WLS, iterated WLS and so on.

In the second category we have two methods—one is long transformation
method and other is ratio method or deflating method. We now discuss the WLS
method as a remedial measure of heteroscedasticity problem.

Let us assume the form of heteroscedasticity as cb'i2 =g’ Xiz‘ In this case

regression equation to be estimated is in the following form : ;_f= (IXL{- [3+;_f

i i i
or, ' =X + B+, e (1)

On the above expression we can apply OLS to get WLS estimate of the
parameters which will be unbiased and efficient.
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If we assume that 0‘? =6%X . 1s the form of heteroscedasticity then to apply

WLS we have to divide the original model by \/x;

i

X; 7 5 %
Therefore the deflated model 1s —<— =8+ or,¥, =X, +v, ...(2)

Applying OLS on (2) we get WLS estimator of B as follows

2NN T
Sa7 T

So the ratio of mean values will be the WLS estimator of 8

We generally assume that o’f =0'22:‘2' But in reality it is difficult to identify

Z;, 1e., the form of heteroscedasticity. To get nd of this problem, Paris and

Houthakker prescribed the general form of assumed heteroscedasticity as
ol =G [E(T))]

For practical application of Paris and Houthakker’s method first OLS is applied
to estimate the parameters of the regression equation. So the new form of

.. . 2 .
heteroscedasticity becomes o’f =gt [O""ﬁXi:I and for WLS we estimate

Y, X,
—=—C 4 Aﬁ,\’ +,
a+BX, o+pX, a+pX,

Then we have to apply OLS on the above equation to get two-step WLS method.
To get accurate values of o and B we shall have to repeat the earlier steps of
this method until we get convergence. This method is known as Iterated WLS
method.
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5.8 Some Numerical Problems

A researcher using time series data for the period 1954-65, estimated the
following consuption function : ¢ = 3 + 0.9272X

The following table includes the data used and the residual errors.

Year Consumption (¢)  Income (X) €;
(Billions of §) (Billions of §)
1954 236 257 0.52
1955 254 275 1.82
1956 267 293 1.87
1957 281 309 271
1958 290 319 2.99
1959 31 337 1.30
1960 325 350 325
Year Consumption (C) Income (X) e;
(Billions of $)  (Billions of $)
1961 335 364 0.26
1962 355 385 0.78
1963 375 405 223
1964 401 437 1.45
1965 431 469 1.14

(1) Test for heteroscedasticity, using Spearman’s rank correlation coeflicient.

(i) Outline the corrective solution which you would adopt if heteroscedasticity
is found significant.

Solution :

To apply Spearman’s rank correlation test we rank X's and |e’s| in ascending
order. The rankings are shown in the following table.
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Rank of X Rank of e D; D/
1 9 -3 64
2 7 =5 25
3 4 -1 1
4 10 —6 36
3 12 —7 49
6 1 5 25
7 8 -1 1
8 2 6 36
9 3 6 36
10 3 3 25
11 6 3 25
12 11 1 1

Total Y Df =324

The rank correlation coefficient estimated from the above data is

e 62D _ | _6x32
. n(n® -1) 12(12% -1)

1944 _1716-1944 _ 228
= 11716 1716 1716 =— 0139

Now we have to test the null hypothesin that the value of correlation coefficient
is zero against the alternative hypothesis that it is not equal to zero. 1.e, we have
to test Hy - p = 0 against H; : p = 0. The appropriate test statistic is then given

r'Aln=2
by = ﬁ”%—z e, it follows a ‘¢ distribution with (»n — 2) degrees of

freedom. Here we have,

-0.139x112-2 _ —0.139x3.162° _ —04396

t = =
J1-(0.139) V/0.9806 0.9902
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st = -0444

Now the null hypothesis will be accepted for the given sample at 5% level
of significance if —1fygp5 #—2 < 1 < fgp5, n—2 and will be rejected otherwise.

From the table value we see that £ g5, # —2 = #5035 10 = 2.228 (as n = 12)
Here t = — 0.444 lies in the range — 2.228 and 2.228 and hence the null hypothesis
should be accepted here. We may thus conclude that there is no problem of
heteroscedasticity.

(i) We assume that the pattern of heteroscedasticity is E(uf)=0’§ x; so that
the appropriate transformation of the original model c, =[3\/JZ +u, will become
¢ u
A
Here ¢, =C, - C,
x,=X, - X, and &, =0

So applying OLS to the new variables we can obtain

pX7

B= th = T & & =, -BX, and correspondingly we can estimate

|

SE(& ), SE(f) and value of R2.
2. The estimated saving function for a 31 years period i1s given by

S, =—644.140085X, 5 _
Cowre (000s) Rs = 0.903

After arranging the X’s in ascending order and omitting nine central observations
we are left with two subsets of data, one with the lower values of X and the other
with the higher values of X,

Applying OLS to each subset, we obtain,

(i) For subset 1 S’l=—738.84+0.088X
(189.4)  (0.015)
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n

R2 = 0787 and ) e =144,7715

(ii) For subset 2 S, =1141.07+0.029X
(709.8) (002

R? = 0152 and D 5 =769,8992

By using Goldfeld and Quandt test, examine whether the problem of
heteroscedasticity exists or not in this problem.

Solution :

For Goldfeld and Quand test, we use the test statistic

e2

o= 5 2 with df = {n—-2-2k}2[v, = v,
€

Where # = total number of observations.

number of central observations omitted

]
I

k = number of parameters to be estimated

Here n = 31, ¢ =9, k=2

n—c—2k _31-9-4_18 -9

2 2 2

D¢ 769,892
Now, F* = zelz T 1447716 5 with d.f (9, 9)

From the table value F* > Fjs5. 9, 9 (= 3.18) and hence the null hypothesis
is rejected at 5% level of significance. Thus the problem is involved with
heteroscedasticity.
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5.9 Summary

Heteroscedasticity problem arises when variance of the disturbance term is not
constant, rather it is varying. In this chapter we have discussed the meaning of
the heteroscedasticity problem. We have identified different sources of
heteroscedasticity problem which includes error learning model, improvement in
data processing technique, presence of outlier in data, existence of discretionary
income, misspecification error, incorrect data tranasformation or functional forms,
skewed distribution in data, etc. There are some procedures to detect the
heteroscedasticity problem which are different depending on the sample size. Under
heteroscedasticity, the OLS estimator of regression parameter is unbaised but
indifferent. Funtuer, the OLS estimatae of the variance of of the estimator of
regression parameter 1s biased.

5.10 Exercise

Short Answer Type Questions :
(a) Choose the correct answer :

{i) Problem of heteroscedasticity is observed when variance of the disturbance
term 1s

(1) zero
(2) one
(3) constant
(4) varying
{1)) Which is not a method of detecting heteroscedasticity ?
(1) White test
(2) Glejser test
(3) Likelihood ratio test
(4) PE test
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(b) Fill in the blanks :

(i) Due to the presence of outlier the variance of the disturbance term will
increase and that leads to problem,

{11) When the variances of the disturbance term ‘u’ are then that
is known as heteroscedasticity.

(c) Identify whether the statements are true or false :

(i) In the presence of heteroscedasticity, the OLS estimator of regression
parameter is still unbiased (consistent) but inefficient.

{11) Likehihood Ratio test is applied to detect the heteroscedasticity problem
when the sample size is small

Medium Answer Type Questions :
1. Mention two major sources of heteroscedasticity.
2. Explain one major consequence of heteroscedasticity.
3. Discuss the likelthood ratio test of detecting heteroscedasticity.
4

. State the Goldfeld-Quandt test for detecting the problem of
heteroscedasticity.

Long Answer Type Questions :
1. What are the sources of heteroscedasticity ?
2. What are the consequences of heteroscedasticity problem ?
3. How can you detect the presence of heteroscedasticity problem ?

4. How can you solve the heteroscedasticity problem ?
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6.10.5 Grid Search Technique

6.10.6 Durbin’s Higher Order Technique
6.11 Some Numerical Problems
6.12 Summary
6.13 Exercise

6.14 References

6.1 Objectives

Reading this chapter, students will get an idea about
® Meaning of autocorrelation

Sources of autocorrelation

Consequences of autocorrelation

Tests for detecting autocorrelation

Remedial measures for autocorrelation

6.2 Introduction

Autocorrelation is a speical case of correlation. It refers to the relationship
between successive values of the same variable, while correlation refers to the
relationship between two or more different variables. In the Classical Linear
Regression Model, it 1s assumed that the disturbance terms are independent of each
other ie., Cov (u;, u)= E(u;, up) = E(u;).E(u;) = 0 for all i # j This assumption
implies that successive values of disturbance term # are temporarily independent,
i.e., disturbance term occurring at one period is not related to any other disturbance.
In other words, when observations are taken over time, the effect of disturbance
occurring at one period does not carry over into another period. However, if the
above assumption is not satisfied, 1.e, if the successive values of disturbance term
are dependent to each other, we say that there is autocorrelation problem. This
autocorrelation problem is mainly observed in time series data unlike heteroscedasticity
which is observed in cross section data also.



100 NSOU e PGEC-IX

6.3 Structure of Autocorrelation Problem

To explain the structure of autocorrelation problem, we are explaining a simple
two variable model as follows : ¥, = o« + X, + u, where subscript t denotes time
series data. In this model, all the assumptions of CLRM are satisfied except no
autocorrelation assumption which is replaced by the assumption #, = pu, |+ €, 1e,
the disturbance term follows first order auto regressive scheme. Here, |p| < 1 and
€, is a white noise, F(e,) = 0, F(e/?) = 62 and E(e, €,,) = 0 for s # 0

So, it can be written
= ppu syt €,.) T €
or, u, = €, + pe. | + PHpu 3+ €,5)

= 3
of, 4, = €, + pe. t pPe, t ples L

or, #, = Zp” €.,

So, E(n) = E(e) + pE(e.) + pPPE(en) + PPE(e3) + ...
So, E(u,) =0

N2

E[ e, J
r=0

and E(uf)

o, E(u?) = E(e, + pe,y + pPe,p + PPers + .

or, E(u?) = E(e?) + pPPE(e ) + PE(€ ) + .

[since, £ (e, €,,) = 0 for s 2 0]

21+ +pt+ . ]

or, E (uf )

or, E(uz) = 0‘2 L

2} = 52
or, E(ur ) = O

i.e. constant variance
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Now, E(u, u,)) = E[{e, + pe, + pPep+ pPPey + .. e + pen
pPestpe st 3]

or, E(u, u_) =E[p(e, 1+ pe ot pPe st pPe, gt .. )]
o, B, u.y) = pE[(€, + pea t PPe3t e gt )]
or, E(u, u,) = plE(e?) + PPE(€, %) + pE(e 3 + ... ]
o, Eu, u. 1) = pol[1+p?+pt+..]
po?
2

or, E(u, 4, ) =

or, E(u, u._) = poﬁ #0

B, u, ) _

Of,
* 62

E

Which is the first order autocorrelation coefficient.
Thus, we have
=€t peg tpPEL T PE T
Similarly we can write in a generalised version as
s = €5 T PELe pzef—:s—Z + PSGr—s—3 oo
So, E(uu. ) = E[{e, + pe,y +..+ ple g+ (et ptle o +.))
{er—s+ PErs1 T pzer—s—Z + }]
or, B u,) = E[pi(e, s+ Pe oy + Perss + Y]
[since, (e, €, = 0 for s # 0]

or, E(”r ”r—s) = pSE[(G,_S T pEsn t pzef—:s—Z o )2]

or, B u._) = p[E(e. ) + sz(ef_s_l) + ]

or, Fu, u,_) = p"'O‘g [1+p2+p8+ ]
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A

M b2

or, E(u,u, ;) =

[2¥]

1-p

or, E(u,u,_,) = pscé

u

Therefore, the s-th order autocorrelation coeflicient i1s p°

6.4 Sources, of Autocorrelation or Serial Correlation

Autocorrelation in time series data may arise due to a number of reasons as

pointed out below :

e Inerita : Autocorrelation in times serices data may arise due to inertia

or sluggishness in the data. In economics, there is the existense of business
cycles, due to which variables move simultaneously as per the cycle. In
recession, variables will decline and in recovery variables will move
upward. Therefore, one movement depends on preceding movements of
the data and hence autocorrelation arises.

Omission of explanatory variables : The regression equation may not
be specified properly in all cases. A few explanatory variables may be
omitted whose influence remains present in the disturbance term. Due to
this, the successive values of the disturbance term remain dependent to
each other causing autocorrelation problem.

Incorrect functional form : The regression equation may not be always
correctly specified. Non-linear regression may be specified as a linear one.
For instance, cost function is actually a quadratic function. But if we take
its linear form, the quadratic part will be incorporated in the disturbance
term which may be the cause of autocorrelation problem.

Presence of lag : In a number of economic specifications, the lagged form
of dependent variable is used as an independent variable in regression
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equation. For instance, present consumption depends on past consumption
level. In the presence of this lagged varnable, the disturbance term may
be correlated to each other.

® Manipulation of data : Time series data are mainly collected from
secondary sources. But all data from secondary source may not be available.
In that case, interpolation or extrapolation is made to find out the missing
values. Further, to avoid short term volatility in data, the smoothing
technique 1s applied. Due to all these manipulations, autocorrelation
problem may crop up.

® Transformation of data : If we estimate the regression equation ¥, = o
+ BX, + u,, then the equation is expressed in its level form. But sometimes
we are interested to express the regression equation in its difference form
ie, AY, = BAX, + v, where AY, =Y, — Y, and AX, = X, — X, . If u,
follows the assumption of CLRM, then, v, will be autocorrelated.

e Cobweb Model : In economics, we observe cobweb phenomenon in supply
function when supply of any period depends on price of previous period
1e., S,=a+ bP,; + u, If in any period price decreases, in the next period,
supply will also decrease. So the disturbance term is non-random and that
may lead to the existence of autocorrelation problem.

® Non-stationary data : A series is said to be non-stationary if its mean
or variance is dependent on time and covariance depends on time lag. If
X and Y are both non-stationary in regression equation Y, = o + X, +
u,, then u, will also be non-stationary. If #, is found to be non stationary,
then it will be autocorrelated.

6.5 First Order Autoregressive Scheme/Markov Process

Generally the problem of autocorrelation arises in the presence of time series
data. We counder a model - ¥, = o + X, + #, based on time series data for 7
=1,2 3, ... , «<<. We now assume that w, = pu,_; + €, with |p| < 1

This is called the first order autoregressive scheme.

Here, p = the coefficient of autocorrelation
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€, = a random term with usual assumption of a random variable, i.e., £(€)
=0, E(€?) = o2 and E(€;€) = 0 for i # .

The complete form of the first order Markov process (the pattern of
autocorrelation for the values of #) is as follows

up = Rupy) = pup + €

Uy = faz) = puy + o4

o = fluz) = pu 3 + €,

U p = Rty e1) = Py T €0p

In order to define the error term in any particular period z, we follow the
method given below. We follow the autocorrelation relationship in period ¢ : w,
= pu,; + &, and then perform continuous substitutions of the lagged values of

u. The process is shown below.
If we substitute #,_; in the expression of #, we get,
u = plpus + €]+ €, = puy + (pete)
If we substitute #,,, then we get,
= plous + €3] + (pey + €) = Plus + (PPey + pet ey
If we substitute #, 3, then we get,
= Plouy + €3] + (pPPe g + pet €
= pluy + (PPes + pley + pe T E)
Let us continue the substitution process for # periods where r is quite large.

Then u, = €,+pe,| + pPe,n + Ple, 3 + ...
Here, as the power of p increases to infinity with the lagged u, then

o
P+ ... tends to zero as [p| < | Thus, #, = ZP} St-r
=0

This is the value of the error term when it is autocorrelated with a first order

autoregressive scheme.
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6.6 A note on Autocorrelation Coefficient p or puu,

We write, #, = pu,_| + €, where p is the true auto correlation co-efficient.

With usual assns about €, (i.e, E(e,) = 0, F(e,e,y) = 0, E(ef)=0‘é We have

p = pupty = —ZZ’uH,,
,/S w2y ol
zeter—l

by replacing #’s by e’s, where e is the error of estimate. Then ;3: —_—

\jZef Ze?_l |

. But u,s are not observable. Hence we estimate p

Here, p is an estimate of true antocorrelation coefficient, p.

Now, when # in any period depends on its own value of the previous period,
we say that # follows a first order autoregressive scheme or first order Markov
process. Then #, = f (#,;). Let there be a simple linear relation . u, = aju,_| +

€, €,1s a random variable with usual assumptions £E{e,) =0, E (ef)= Gf, E (e;€)

= 0. Here a; i1s the coefficient of autocorrelation relationship. From OLS,

& = Z"r“r—l zf’r"t—l
- i H,
1 i X

For large examples, > u? =Y u? . So, p=a.

. On the other hand, the autocorrelation coefficient, p=

Hence the simple first order autoregressive scheme is #, = pu,_| + €, If p=0,
u, = €, and there is no autocorrelation.

6.7 Mean, Variance and Covariance of the Autocorrelated
Disturbance Variable

1. Mean of the autocorrelated disturbance term (u)

24
We have, u, = D>, p" €.,
=0
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o o
Now, mean of #, = E(n,) = E[Z P Et—r:|= %PrE (er—r)
r=0 p=

But by assumption of the distribution of €, we have, E(e,.,)= 0. So, E(u,)
= 0. Thus mean of autocoorrelated #’s is zero.

2. Variance of the autocorrelated u’s
By definition, var (u,) = E[u, — E(u)]?

As E(u) = 0, var (u) = E(u3)=E[Zp” e,_,,]
=0

o
2
Si— ) = 2 P> Var(s,_,.)
=0 r=0

I
g
——
©

%,
o
el

= Y 7ol =0l (1+p* +pt+pSen)

=0
= o2 1 ~as | pl< 1.
1-p

#

o2
So, Var (u) = cb'2=1 = _for |p|< 1.

3. Covariance of the autocorrelated u’s

o= 2
We know, u, =¢,+pe,_ +p €, +

and 0, U,_| =€+ PE ,+p € 5+
Now, Cov (#; u, ) = Elu, - E(ullu, ) — E(u-p]
= Flu, u,,] as E(u)) = 0 and E(u,;) = 0
= El(e,+pe +pPeat Netpe, + pPez+ )]
= E[{e, + (et pex + e + pea + PPez+ )]

= Ele, (e + pen + pPez +)HE[p(e+ pen + pPez+ Y]
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0+ pE (e — perat ples + )

2 2

= pE(ef_l +p* el , +pt €24+ +eross products)

= p(cré +p?cl+piol+-+ 0) as E(cross products) = 0

=pol (L+ R+ p+ )= poi. as [p| < 1

1-p?

2
= pcﬁ [05‘5.5 s =0, = Var(u)]

So, Cov (u,, u,1) = po?

i

2

2, efc.

Similarly, Cov (u,, #,7) = E(u, u,5) = p*c

In general, Cov (%, u,.,) = psoﬁ (for s = t)

6.8 Consequences of Autocorrelation

If there is autocorrelation, applying the OLS method, we can get the unbiased
estimators of the paramters but cannot get the minimum variance of the estimators.
In other words, under autocorrelation or serial correlation of the disturbance term,
the value as well as the standard errors of the parameter estimates are affected.
In particular we get the following results in the presence of autocorrelation in the
disturbance term :

1. OLS estimates are unbiased

In the simple regression model, the value of the slope parameter in deviation
form is given by :

=zxfy.r‘ =fo(1?-}_’)=zxf1’f—1_’zxf =zxiyi_0 as Ex; =0
Xy X% 2% 25

B



108 NSOU e PGEC-IX

X

= ZKJQ where X; = 21

2
X

= 2K, (00 + BN+ u) = 02K, + PRKX, + ZKu,

25
7

0 and 2 ZXi(xi+f)
=0 an Kx;, = ZX‘2
]

or, B=ﬁ+ZK,-u,- [as ZKi =

T24+TY Y
= sz =ZX2 =1]

E(B)= B+ E(XKwm) = B+ ZKEw) = B+ 0 = B [as Ew) = 0]
So, Bias in § = E(f§)— = =0 Thus, whether there is autocorrelation

or not, the slope parameter’s estimate has no statistical bias. Similarly we can show
that the estimate of intercept parameter (¢ ) has also no bias in the presence of

autocorrelation. We have, ¢=y7-fX= Z[l—f&] Y, where f = EKiYi

R

x

i

and K, = zx?

- Z[l YKi](a+BX,- +14; )

n

= a+pX LN -X oY K, - XBY KX, - X YKy,

= a+ﬁf+}1—12ui —ﬁf—fZKfu‘.[asZKf = %; =0J

= a+}1—12ui—fz&-ui
E(&)=a+%ZE(u,-)—YZK,-E(u,-)=a(;_-E(u,-)=0)

- Bias in a=FE(@)-o=0—ox=0.

Thus, even in the presence of autocorrelation, ¢ has no bias.
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2. The variances of OLS estimates are underestimated.

When #’s are autocorrelated, the variance of estimate ﬁ in simple regression
model will be biased downwards (i.e., underestimated).

Proof : We have ﬁ—ﬁ = ZKf“f and the Var (B)=E|:2K;u; ]2 where
X;
ki= Zx?
or, Var (ﬁ):E[ZK21f2+ZZZKK oy ]
> K2E@?)+2Y) Y KK E () )

2 2
o)
- o} 2% —= 4250 (v Euay) = 0) = =5
%) 2
This 1s the value of Var (ﬁ) in the absence of autocorrelation in #. However,

with «’s related with a first order autoregressive scheme, E(u#?) = 62 and

E(uu,_g)=p* o2 So, now,

Zxx
Var(B) = /sz’f2 il

Expanding the second term on the RHS, we get,

1—1

2 x:'x:'+1 2 x +2

2 i=l
g > | P + p Foeeraes

Var(B) = =X~ +202 bV p P
= (3] [z]
| i—1

=l
n—2
2
— O.u ZX: | lexl+2 Y.x
Y 2 (14 2p St 20’ Lt 2p" T L
i zxi

2 2
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A 2
In the absence of autocorrelation, Var(ﬁ):% 5
Xi

But in the presence of autocorrelation {p > 0) and if X is also positively

correlated (i.e., Exf, x; # 0), the expression in the bracket is almost certainly greater

than one (or the second term in equation (1) is positive). This proves that the estimate
of variance will have downward bias due to positive autocorrelation. If the
explanatory variable X of the model is random, the co-variance of successive values

is zero (i.e., Ex,-xj = 0). Under such circumstances, the bias in Var (ﬁ) will not
be serious even though | is auto correlated.

3. In the presence of autocorrelation, in #;’s, the predictions will be
inefficient.

If the values of u are autocorrelated, the predictions based on least square
estimates will be inefficient. This means that the predictions will have a larger
variance as compared with predictions based on estimates obtained from other
econometric techniques like GLS (Generalised Least Squares).

6.9 Test, for Autocorrelation

There are various ways of testing autocorrelation. Two traditionally applied
tests are : Durbin-Watson test and Von Neumann ratio method. There are however,
some other tests as well We have considered seven such tests.

6.9.1 Durbin-Waston Test

J. Durbin and G S. Watson have suggested a test for autocorrelation. The test
is applicable to small samples. However, the test is appropriate only for the first
order autoregressive scheme :

"y = pip + €,
In this method, we test the null hypothesis

Hy © p = 0 against the alternative
H 1 - pF 0
In language, our null hypothesis is : Hy : the u’s are not autocorrelated with
a first order scheme. We shall test this hypothesis against the alternative hypothesis :
H, : the u’s are autocorrelated with a first order scheme.
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To test the null hypothesis we use the Durbin-Watson statistic, say, . It is
given by

d= ———— where ¢, (for t = 1, 2, .....n) are the OLS residual terms.

e

t=1

Ze +Ze:1 22 €,

I_

Now, d =

H H H
. 2 2 2
Now, for very large values of n 1.e, for large samples, 26’; ,Ze _1 and ze;

are approximately equal.

e e T e

But in the model e =pe,_,+¢, for 1 = 2, 3 n

zerrl

2 where 0 is OLS estimator of p.
e

b R | ¥

d=2(1-p). Since -1 < P <1, 0<d <4 Thus, d lies between 0 and 4.

Let us consider different values of £ and the corresponding values of d where
d=2(1-p)

First, if there is no autocorrelation, £ = 0 and d = 2. Thus if from the sample
data are find &* = 20, we accept that there is no autocorrelation in the scheme.

Second, if P = + 1, d = 0 and we have perfect positive autocorrelation.

So, if 0 <d* <2, there i1s some degree of positive autocorrelation. If J* is
closer to zero, the autocorrelation is stronger. If &* is closer to 2, the autocorrelation
is weaker.
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Third, if p = -1, d= 4 and we have perfect negative autocorrelation. So,
if 2 <d* <4, there is some degree of negative autocorrelation. If d* is closer to
4, (negative) autocorrelation is stronger. If d* is closer to 2, (negative) autocorrelation
is weaker.

If there is no problem of autocorrelation, P should be zero and d = 2. Thus,
to test the null hypothesis H, : p = O against the alternative H; : p # 0 means
to test the null hypothesis H, : d =2 against the alternative H, : d # 2.

Here the problem is that the exact sampling distribution of the statistic ‘d’
is not known. What Durbin and Watson have doen is to specify one upper limit
and one lower limit of d. Let d; stand for the upper limit of d and d; stand for
the lower limit of d. With the help of d; and d;; we have to determine whether
autocorrelation exists or not. The values of d; and d;; are available at the 5% and
1% levels of significance.

The whole argument is shown in the following diagram.

f(d) A

Accept Hy .
d— No autocorrelation—>§

rinicai Critical

region 5 ‘region
0 : : 7 : : Z
Reject  dp dy 4-dy | 4-d; Reject
i * — S— f H
Accept Hy ; No autocorrelation

> > Inconclusive < <
Range
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H
Z €6

From the sample, we calculate &* = 2 (1 —f’) where P = ‘:i—

2
€l
=2
We may now consider the following cases.

1. If it is found that d* < d;, we reject the null hypothesis of no autocorrelation
and accept that there is positive autocorrelation of first order.

2. If &* > (4 - d;), we reject the null hypothesis of no autocorrelation and
accept that there is negative autocorrelation of the first order.

3. If dyy < d* < (4 — dyy), we accept the null hypothesis of no autocorrelation.
4. It d; <d* <dgorif (4 —dy) <d* <(4 - dp), the test is inconclusive.
Limitations of Durbin Waston Test

There are some limitations of Durbin-Watson test.

1. There are some inconclusive ranges in the test. If ¢ lies between d; and
dy or between (4 — dpy) and (4—dj), we cannot conculde whether there is
autocorrelation or not in the given set of data.

2 This test method is appropriate only when the nature of the autocorrelation
is of first order autoregressive type. When autocorrelation is of higher order and
non-linear type, this test is inappropriate.

3. If there is any lagged independent variable in the model, the Durbin-Watson
d-statistic is inappropriate for testing autocorrelation.

6.9.2 Von Neumann Ratio

In general Von Neumann ratio is the ratio of the variance of the first difference

1’
, 2 =X )2 /n-1
of any variable x over the variance of x, ie, 3_2= =2 It is

n

T Y4, -X)

t=1

applicable when X is directly observable and its successive values are not
autocorrelated.
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Thus, Von Neumann ratio is another traditionally applied test for detecting
autocorrelation in regression analysis. The Von Neumann ratio is

s n / where ¢, is the value of the residual in period t
e Eez '
t
=l

and » is the sample size. As the values of the random variable (#’s) are not directly
observable, they are estimated from OLS residuals {e¢’s). The VN ratio is applicable
for large samples (7 > 30).

The VN ratio i1s related to the Durbin-Watson d-statistic by the formula :

2
6—2=ﬁ.d . and follows approximately a normal distribution for large values
R _
of n

The VN test statistic is used for testing the presence of autolcorrelation in

the same manner as d-statistic does the same.

The VN ratio is however not applicable for testing the autocorrelation of the
w’s, especially if the sample is small (# < 30).

6.9.3 Berenblut and Webb Test

This test is applicable when the absolute value of p is very high. Other
conditions required for this test are same as DW test. The test statistic 15 here—
H 2
zelr
_ =1

1

e
=1

Where ¢, is the OLS residual obtained from regressing Y, on the original
explanatory variables with constant term.

But ¢, is the OLS residual obtained from regressing AY, on the first differences
of explanatory variables with no intercept term.

g 1s tested using the same bound of DW statistic.

If g>d, or g>4 - d, then there is no autocorrelation. Otherwise either there
is autocorrelation or we cannot derive any conclusion regarding the presence of
autocorrelation,
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6.9.4 Wallis Test

Wallis test 1s applied for testing fourth order autocorrelation. Fourth order
autocorrelation may be found in seasonal data. i.e., quarterly data. It is applied
when we have quarterly time series data. Here the test statistic is

1

Z (G )2

_ =5
d4 -_—-—

Here d, is also tested on the basis of DW bounds.

If dy > d, or dy > 4 — d, then there is no autocorrelation. Otherwise we get
either inconclusive range or there is autocorrelation problem in the disturbance term.

6.9.5 Durbin’s h Test

When lagged value of dependent variable is used as an explanatory variable
we use Durbin’s / test to detect autocorrelation.

Let the model be y, = ay._, + BX, + w,

where u, = pu,_| + €,

Here &, is white noise and #, depends on #,, and y,_, depends on #,,
So, ¥, and u,_; are not independent,

Therefore the OLS estimates of regression parameters will not be consistent
in the presence of autocorrelation when y,; is used as an independent variable.

Here the test statistic is s=p %Mwhere h approximately follows standard
\’ —n

normal distribution. With the null hypothesis H, : p = 0 against. , : p # 0 ie,
if # < 1.96, there is no autocorrelation problem; otherwise there is autocorrelation
problem. This test can be further illustrated with an example.

Numerical Example :
An equation of demand for food estimated from 50 observations gets the

following results (figures in the paranthesis are standard errors) :

log g, = constant - 0.31log p,+0.451log y,+0.65log ¢, ,
(0.03) (0.20) (0.14)
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R =090 & DW = 18

Where ¢, = food consumption per capita
p. = food price
vy, = per capita disposable income

Apply Durbin’s / test for examining the presence of st order autocorrelation
at 1% level.

Solution :
Here the following information are given,

n =50
a = 065
SE(a) = 0.14
Var (¢) = (0.14)2 = 0.0196
D W =18
We know that
DW =2(1-p)
o, p =1- %
=1- -1 -09=01

50 B
w =01 W155000.0196) = 50

Here, Hy : p = 0 agamnst H, - p = 0
A approximately follows standard normal distribution.
At 1% level, table value 1s 2.58

As observed value of / is greater than table value, H, is rejected, So there
is autocorrelation in the disturbance term of the problem.

6.9.6 Durbin’s t Test

The Durbin’s / test cannot be applied if n v(¢)>1. In such a situation, Durbin
prescribes an alternative test known as Durbin’s ¢ test. This test is explained as
follows :
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Let the model be y, = oy, + Bixy, + Boxy, + 2, ... (1)
where w, = pu, | + €,
Here €, is a white noise.

Here equation (1) is to be estimated using OLS and the OLS residuals are
to be computed.

Let the OLS residuals be ¢,

Using e, we estimate the following relation

e, =pe_+a’y,_ +Bx, +Bix,+e, ....(2)
and test the regression parameter of ¢, using ¢ test where Hy, - p = 0.

If H; is accepted using ‘7 test, there 1s no autocorrelation problem, otherwise
there is autocorrelation problem in the disturbance term. This type of test is known
as Durbin’s ¢ test.

6.9.7 BG Test or LM Test

Higher order autocorrelation test has been devised by Breusch and Godfrey
and following their names, this test is known as BG test. In this test, the general
principle of Lagrange multiplier test is available and so this test is also known
as LM test.

Let the model be
5 4
¥, =a+zlrj;y,_f + By, (1)
= i=1

Where #, =py,_ + P, 5+ + Pyt €
Where &, 1s white noise. Equation (1) is estimated using OLS and OLS residuals
are estimated which be e,

Next, the regression equation of e, 0n €., €2, ..., Vil Yi2s -oony X1, X3,
. are estimated as follows

o=

i 3 k
oo = Zl,pier—l +Zirfyr—j +z{ﬁexer+ &
i= =
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and test the null hypothesis Hy = p; = p = ... =p, =0
This test can be applied using F test based on R?

But for large sample, Breusch and Godfrey prescribed that one can apply LM
test where test statistic is :

p-F=@-p R ~yt

If this test statistic is found to be significant, we can say that there is
autocorrelation problem.

6.10 Remedial Measures of Autocorrelation Problem

There are various remedial meaures for solving autocorrelation problem. They
are discussed as follows :

6.10.1 Estimating First Difference Equation :

In the presence of autocorrelation, instead of estimating regression equation
in level form, the equation should be estimated in its difference form, specially
when the value of DW statistic 15 very low. As a rule of thumb, 1st difference
equation can be estimated if DW value is less than R2? ie., DW value < R2 value.

Let the regression model be
Y=o+ BX, + u
This equation’s one period lagged form is
Yoo =o+ BX,, = u,
Deducting this from the first, we get,
Y, - Yy =B X, =X )+ (= ) e (1)

On the assumption that #, & #, | are independent to each other, one can apply
OLS to equation (1) to get the estimate of parameters in the presence of
autocorrelation problem. It is to be noted that in the difference form, no intercept
term is used. The intercept term can be added if it is assumed that there is a trend
component.

e, ¥, =a+ o+ X, +u



NSOU e PGEC-IX 119

In lagged form,
Voy=oa+80-1)+ BX | + u,
Subtracting we get,
Yi,- Y., =0+BX — X))+ (u —u_y) ... (2)

Hence in the presence of autocorrelation either equation (1) or (2) can be
estimated as its solution instead of estimating the equation in its level form.

The problem before the researcher is to make a choice between the level form
and difference form estimation. We should choose that form whose Residual sum
of squares is least. But the RSS of these equations cannot be compared as R cannot
be compared with different forms of dependent variable.

The variance of #, is assumed to be known : Var () = &7
It is assumed that there is no heteroscedasticity
Var (#, — u,y)

= Var (u,) + Var (#_) — 2Cov (u, u.y)

= & + & - 2pc?
= 20% - 2p&°
= 20" (1 - p)

Cov(u,,u, 1)
where p = T(“;)
So, Var (4, — u,)) = 262 (1 - p)
= & DW
as DW =2 (1 - p)

o° is estimated from respective RSS

(RS’S Difference form]
E =
n—k-1
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Where RSSp is obtained from difference equations.

RSS, )_
£ (n—k = e D)

From (3) we get,
ERSSp) = -k -1) o> DW
From (4) we get,

E [RSS; (n—k—l)DW] =wm-k-1) & DW

n—k-1
Hence RSSp can be compared with adjusted RSS i.e.,ﬁ (RSS (DW)

-k-1
= =2 RSS; 2(1-p)

n_

Hence RSS obtained from level form is to be adjusted to make it comparable
with RSS obtained from difference form and that equation is to be selected whose
RSS after adjustment is minimum.

6.10.2 Estimating Quasi-difference Equation :

When the autocorrelation coefficient p is known, quasi-difference equation can
be estimated to solve the autocorrelation prbolem.

Let the model be,
Y, = o+ BX, + u, where ... (1)
up=pug TE
Here p is assumed to be known and €, is a white noise.
Taking one period lag and multiplying by p, expression (1) is written as
pPYiy = po+ PpXey + puy (2)
Deducting (2) from (1) we get,
¥, — pYe) = a(l-p)+ BLX — pXia] + [, — pups] 3)
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which is now difference equation or quasi-difference equation.
Expression (3) can be written as ¥, = of + X" + €, (3"

As &, 1s a white noise, we can apply OLS on this transformed variables to
avoid autocorrelation problem.

If (3) is estimated, ¥, and X, are ommited, but those should be included with
the following transformation

Y, =¥ \1-p?

X 1* =X 1\/1‘7
Application of OLS on transformed variable is GLS.
Where, 1" =Y, — pY., V=1
X =X - pX
6.10.3 Durbin’s Two-Step Procedures
This method is applied to slove autocorrelation problem when p is unknown.
Let the model be
Y,

o+ BX, + u,
where w, = pu,_ + €,

and i, follows first order autoregressive scheme and e, is a white noise.
Therefore there is autocorrelation problem in the disturbance term.

So, we can write,
oY =pa+ pBX. . + puy o (2)
Deducting (2) from (1) we get,
Y, —p¥y = a(l-py+ X, — pfX,  +u, — puy,y
ie, ¥, =a(l-p+p¥  +BX,+ (0B X+, (3)

Now, estimating equation (3) by OLS we can estimate the coefficient of
Y,; which is p.
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Estimating p we can transform the variables as follows :

Y=Y - pt,

X' =X - pX, =2 L H

nt = 1-p* y

& X" = 1-p% X,
Now, we can estimate finally the relation
Y'o=o*+ BT + €
Using OLS method we can estimate the parameters.

Here intercept term is to be adjusted as follows :

a*
1-p

a:

This method is known as Durbin’s two-step procedure.

But this procedure has one limitation. If there are a number of explanatory
variables, number of parameters to be estimated will be unduly large, lowering
the degree of freedom.

6.10.4 Cochrane Orcutt Iterative Procedure
This method is applied to solve autocorrelation problem when p is unknown.
Let the model be
Y, =oa+ BX, +tu o (1)
where u, = pu, | + €,
and &, is a white noise.

Therefore there is first order autocorrelation problem in the disturbance term.
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Using OLS method the residuals are computed and p is estimated as follows :

f’ - Z ere;—l
2.4

Next, the variables are transformed as follows :

X' =X, - pX,
fore =23 .......,¢

nt = 1-p* y

X" = 1-p* X
The relation (1) with transformed varibles is to be estimated by OLS method.
The residuals are then to be calculated and p is estimated. For a new value of
p. the variables are given transformed values and the whole process is repeated

until p converges and after convergence of p we shall finally estimate the

parameters using OLS.

This procedure also has two limitations.
(i) p may not coverage for successive estimations.

(i1) With this procedure, only first order autocorrelation can be cured. Higher
order autocorrelation cannot be cured.

6.10.5 Grid Search Technique

The earlier method 1.e, Cochrane-Orcutt iterative procedure suffers from the
limitation that p may not converge. To avoid this limitation Hilderth and Lu

prescribed Grid Search technique as a solution of autocorrelation problem.

We know that -1 < p < + 1
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Let the model be ¥, = o + BX, + w, ... (1)
where w, = pu,_; + €,
Let us take all values of p with the interval of 0.1 in the range -1 to +1

and estimate the following relation for each p:

Yr* = OC"*‘ﬁX,*'i‘ =¥

where Y =Y, - pY,

and finally we select that p for which RSS of equation (1) is minimum.
Let p be — 0.4

Next, consider all the ;3 values in the interval 0.01 for the range — 0.5 to
— 0.3 and estimate equation (1).

Next, select that p for which RSS is minimum and the same process is repeated

for smaller intervals like 0.001, 0.0001, etc. and we shall stop until RSS remains
constant.

6.10.6 Durbin’s Higher Order Technique
Let the model be
Y, =a+ BX, +tu ..... . (1)
where u, = pju,_ | + Py + €,

and €, is a white noise 1.e., there is autoregressive process of order two in
the disturbance term.

According to Durbin’s prescription, the following relation is to be estimated.
Yo =A+pto + pp¥p + BX, - BpXy - BpoXis + & o (2)
It is derived in the following manner. we have,
Y, = o+ BX, + u,
Pt = pre+ By + pr
PYia = poot + BaXis + potis



NSOU e PGEC-IX 125

So, subtracting we get,
Yo —pi¥ey — polis
o1 = py — p2) + BX; — Bor1Xe 1 — BpaXop + 11— Prth s — oty
A+ Y - BoiXey - BpXin t &
o, ¥ =A+p Yy + pYio + B, - BoiXy — BpaXin t &

Estimating equation (2) we get the estimated values of p; and p,. Using these
values of p; and p, the variables are transformed as follows :

Yr‘( =Y, - PV - P,f,

and X' =X, - P X, - PoX,,

Equation (1) is then estimated using the transformed variables ¥," and X" to
get the final estimate of the parameters.

This method is applied for solving higher order autocorrelation problems.

6.11 Some Numerical Problems

1. Consider the model - ¥, = o + BX, + u, with the following observations
on ¥ and X

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y 2 1 2 3 3 2 5 6 11 10 12 15 10 11 12

Test for autocorrelation.

Solution : For testing autocorrelation, we have to first estimate the regression
model and then we have to estimate e =7, Y . where Y r= 0+ ﬁX . and finally
we have to find the DWW statistic

D> (efz —e?-l y

The following table (3.2) gives necessary calculations to estimate ¢ and ﬁ
in the model : ¥, = o + BX, + u,
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Now, we have

zxryr _ 267
2"3 ~ 280

G=Y-BX=7-0954x8 = 7 - 7632 = - 0.632

B = = 0.945

2
2 _ Zex _57.390

So, 52 == =4
o & ==L =330 -4 4146
2 _ Oy _ 44146
Var = H = =
(B)= g = 43592 = 0.0157
IS
- SE (B)=+00157 =0.1252
2
Var(g) = 2 257
nyx,
| 441461240
15% 280
5474.104
= 74104 3036
4200
. SE(&)=+13036=11417
2
R pr Rt (0954 <280 osagina _ o

Y 52 312 312

Thus the estimated model is ¥, =—0632 + 0.954X,, RZ =03816
(11 (0.1252)

2
e —e
Now, DW statistic is " = Z( = 41) _73.660 _1 5ga
¢ S e? 57300 12
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Values of d; and d,, at 5% level of significance with » = 15 and one explanatory
variable (# = 1) and &; = 1.08 and d, = 1.36. Here we see that d; < d* < d,
and hence the test is inconclusive. In other words, on the basis of Durbin-Watson
test we cannot say whether autocorrelation problem exists or not.

2. Simple consumption function i1s estimated from hypothetical data on income
(Y4 ;) given in table A

It is given that the estimated consumption functin is :
¢, =3.2940906Y,, R>=099
{0.0033)
(a) Examine whether any autocorrelation problem exists or not.
Solution :

The estimated consumption function is given

C, =329+0906Y,, R?=099
(0.0055)

(Calculations are given in the table A)

This equation explains almost all variations in consumption. But variance of
B is extremely small.

Now we have to examine the error terms to see whether the evidence of
autocorrelation exists or not.

2
2l —ea) 14208 _ 0.9926

The value of DW statistic is d" = =
v Zef 143.14

(after substitution of values from the table).

At 5% level of significance for # = 19, ¥’ = 1 (for one explanatory variable),
d; = 1.18 and d, = 1.40. Here we see that & < d; (= 1.18) and hence we reject
null hypothesis of no autocorrelation in favour of alternative hypothesis of positive
autocorrelated disturbance terms. i1.e., there is positive autocorrelation.
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6.12 Summary

Autocorrelation (also known as serial correlation) is an econometric problem
in which the current value of an error term is correlated with its past values. In
CLRM it is assumed that the disturbance terms are independent to each other and
if this assumption is violated then we observe autocorrelation problem.

This autocorrelation problem is mainly observed in time series data.
Autocorrelation problem in time series arises due to various reasons like inertia,
omission of explanatory variables, incorrect functional form, presence of lagged
variable as explanatory variables, manipulation of data, transformation of data, non-
stationary data etc. Presence of autocorrelation problem in any data leads of
underestimation of variance of regression coefficient, underestimation of variance
of disturbance term, OLS estimates of regression coefficient become inefficient and
the predictions on the basis of OLS estimates are also inefficient. The autocorrelation
problem in any data can be tested by various tests. The popular tests for detecting
autocorrelation problem are Durbin-Waston test, Von Neumann Ratio test, Bercublut
and Webb test, Wallis test, etc. These tests are applied if the explained variable
is not used as an explanatory variable in lagged form. But if the lagged value
of explained variable is used as an explanatory variable then Durbin’s t test and
Durbin’s h test are popularly used.

Autocorrelation problem can be sloved by estimating first difference equation
or by estimating quasi difference equation. If p is unknown, then Durbin’s two-
step procedure, Cochrane-Orcutt Iterative procedure, Grid search technique and
Durbin’s Higher Order Technique are used to solve the autocorrelation problem.

6.13 Exercise

Short Answer Type Questions :
(a) Choose the correct answer :

(i) In CLRM, if the assumption of independence of disturbance term is
dropped, then we get the problem of

(a) Heteroscedasticity

(b) Multicollinearity
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(c) Autocorrelation
(d) None of the above

(i1)) Which of the following is not a popular test of detecting autocorrelation
problem?

(a) Durbin-Watson test
(b) C N test
(c) Von Neumann Ratio test
(d) Berenblut & Webb test
(b) State whether the statements are true or false,

(i) Autocorrelation problem is generally observed in time series data unlike
heteroscedasticity which is seen in cross section data also.

{11) In the presence of autocorrelation problem, the OLS estimate of variance

of regression coefficient ([3) overstates the true variance.

(¢) Fill in the blanks :

(i) Two popular solutions of autocorrelation problem are and

(i1) If the value of DW statistic is less than the lower bound d; then there
autocorrelation 1s

Medium Answer Type Questions :
1. Write a short note on DW test for autocorrelation.
2. Discuss in brief any one way to solve the autocorrelation problem.

3. Define autocorrelation. Describe in brief the structure of autocorrelation
problem.

Long Answer Type Questions :

1. Define autocorrelation. Describe the structure of autocorrelation problem.
What are the major sources of autocorrelation problem?

2. How can autocorrelation problem be detected? Describe different tests to
detect autocorrelation problem.

3. How can autocorrelation problem be solved? Discuss different methods in
details.
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APPENDIX
STATISTICAL TABLES
TABLE I
ORDINATES AND AREA OF THE DISTRIBUTION OF
STANDARD NORMAL VARIABLE*

1 d(1) D(1) T d(1) D(1) T G(T) D(7)
00 3989423 5000000

01 3989223 5039894 51 3502919 6949743 101 2395511 8437524
02 3988625 5079783 52 3484925 6984682 102 2371320 8461358
03 3987628 5119665 53 3466677 7019440 103 2347138 8484950
04 3986233 5159534 54 3448180 7054015 104 2322970 8508300
05 3984439 5199388 55 3429439 7088403 105 2298821 .83531409
06 3982248 5239222 56 3410458 7122603 106 2274696 8554277
07 3979661 5279032 57 3391243 7156612 107 2250599 8576903
08 3976677 5318814 58 3371799 7190427 108 .2226535 8599289
09 3973208 5358564 59 3352132 7224047 109 2202508 8621434
10 3969525 5398278 60 3332246 7257469 1,10 2178522 8643339
A1 2965360 5437953 61 3312147 7290691 1.1l 2154582 8665003
12 3960802 5477584 62 3291840 7323711 1,12 2130691 8686431
13 3955854 5517168 .63 3271330 7356527 1.13 2106856 .8707619
14 3950517 5556700 64 3250623 7389137 1.14 2083078 8728568
15 3944793 5396177 .65 3229724 7421539 1.15 2059363 8749281
16 3938684 5635595 66 3208638 7453731 1.16 2035714 8769756
17 3932190 5674949 67 3187371 7485711 1.17 2012135 8789995
18 3925315 5714237 68 3163920 7517478 1.18 .1988631 .8809999
19 3918060 5753454 69 3144317 7549029 1,19 .1965205 8829768
20 3910427 5792597 70 3122539 7580363 120 1941861 8849303
21 3902419 5831662 71 3100603 7611479 121 .1918602 8868606
22 3804038 5870644 72 3078513 7642375 122 .1895432 8887676
23 3885286 5909541 73 3056274 7673049 123 1872354 8906514
24 3876166 5948349 74 3033893 7703500 124 1849373 8925123
25 3866681 5987063 75 3011374 7733726 125 .1826491 8943502
26 3856834 6025681 .76 2088724 7763727 126 1803712 8961653
27 3846627 6064199 77 2965948 7793501 127 .1781038 8979577
28 3836063 6102612 .78 2043050 7823046 128 .1758474 8997274
20 3825146 6140919 79 2020038 7852361 129 1736022 9014747
30 3813878 6179114 80 2896916 7881446 130 .1713686 9031995
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TABLE I (Contd.)

T ¢(1) ) T 6T D(1) T ) D(7)

310 3802264 6217195 81 2873689 7910299 131 1691468 9049021
32 3790305 6255158 82 2850364 7938919 132 1669370 9063825
33 3778007 6293000 .83 2826945 7967306 133 1647397 9082409
34 3765372 6330717 84 2803438 7995458 134 1625551 9098773
35 3732403 6368307 85 2779849 8023375 135 1603833 9114920
36 3739106 6405764 86 2756182 8031033 136 1582248 9130830
37 3725483 6443088 87 2732444 8078498 137 1560797 9146565
38 3711539 6480273 88 2708640 8105703 138 1539483 9162067
39 3697277 6317317 89 2684774 8132671 139 1518308 9177336
40 3682701 6354217 90 2660852 8139399 140 1497275 9192433
Al 3667817 6590970 91 2636880 8185887 141 1476385 9207302
A2 3652627 6627573 92 2612863 8212136 142 1455641 9221962
43 3637136 6664022 93 2388805 8238145 143 1435046 9236415
44 3621349 6700314 94 2564713 8263912 144 1414600 92350663
A5 3605270 6736448 95 2540591 8289439 145 1394306 9264707
A6 3588903 6772419 96 2516443 8314724 146 1374165 9278550
47 3572233 6808225 97 2492277 8339768 147 1334181 9292191
48 3533325 6843863 98 2468093 8364569 148 13343533 9305634
A9 3538124 6879331 .99 2443904 8389129 149 1314684 9318879
S0 3520653 6914625 1.00 2419707 8413447 150 1295176 9331928
L31 1273830 9344783 201 0529192 9777844 251 0.170947 9939634
132 1256646 9357445 202 0318636 9783083 2352 .0166701 9941323
153 1237628 9369916 2.04 0508239 9788217 253 0162545 9942969
1.54 1218775 9382198 2.04 0498001 9793248 254 0158476 9944574
L35 1200000 9394292 205 0487920 9798178 2.55 .0154493 9946139
156 1181573 9406201 206 .04779% 9803007 2.56 .0150396 9947664
157 1163225 9417924 207 0468226 9807738 257 0146782 9949151
158 1145048 9420466 2.08 .0458611 9812372 258 .0143051 9950600
139 1127042 9440826 209 0449148 9816911 2.59 0139401 9932012
Le0 1109208 9452007 210 0439836 9821336 2.60 .01335830 9933388
16l (1091548 9463011 2.11 0430674 9825708 2.61 0132337 9954729
162 1074061 9473839 2,12 0421661 9829970 262 .0128921 9956035
163 1036748 9484493 213 0412795 9834142 2.63 .0125381 9937308
164 1039611 9494974 214 0404076 9838226 2.64 0122315 9938547
165 1022649 9505285 2,15 0395500 9842224 265 0119122 9959754
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TABLE I (Contd.)
T d(T) D(1) T d(T) D(1) T (1) D(1)

1.66 1005864 9515428 216 0387069 9846137 266 0116001 9960930
167 0989235 9523403 2.17 0378779 9849966 2.67 0112951 9962074
168 0972823 09533213 2.18 0370629 9833713 268 0109969 9963189
1.69 0956568 9544860 2.19 0362619 9857379 2.69 .0107056 9964274
170 0940491 9554345 220 0354746 9860966 2,70 .0104209 9965330
L7101 0924591 9563671 221 0347009 9864474 271 0101428 9966358
172 0908870 9572838 222 0339408 9867906 272 0098712 9967339
1.73 0893326 9581849 223 0331939 9871263 2.73 .0096058 9968333
1.74 0877961 9590705 224 0324603 9874545 2,74 .0093466 9969280
175 0862773 9599408 225 0317397 9877735 273 0090936 9970202
176 0847764 9607961 226 0310319 9880894 276 .0088465 9971099
177 0832932 9616364 227 0303370 9883962 2.77 .0086052 9971972
1.78 0818278 9624620 228 0296546 9886962 2,78 .0083697 9972821
179 0803801 9632730 229 0289847 9889393 279 0081398 9973646
1.80 0789502 9640697 230 0283270 9892739 280 0079155 9974449
181 0775379 .9648521 231 0276816 9895559 281 .0076965 9975229
1.82 0761433 9656205 232 0270481 9898296 2.82 .0074829 9975988
183 0747663 9663750 233 0264265 9900969 283 0072744 9976726
184 0734068 9671159 234 0258166 9903581 284 0070711 9977443
1.85 0720649 9678432 235 0252182 9906133 285 .0068728 9978140
1.86 0707404 9685572 236 0246313 9908625 2.86 .0066793 9978818
187 0694333 9692581 237 .0240356 9911060 287 .0064907 9979476
188 06381436 9699460 238 0234910 9913437 288 .0063067 9980116
1.89 0668711 9706210 239 0229374 9915758 2.89 .0061274 9980738
190 0656158 9712834 240 0223945 9918025 290 .0059525 9981342
191 0643777 9719334 241 0218624 9920237 291 0057821 9981929
192 0631566 9725711 242 0213407 9922397 292 0036160 9982493
193 0619524 9731966 243 0208294 9924506 2.93 .0054541 9983052
194 0607652 9738102 244 0203284 9926564 294 .0052963 9983589
195 0593947 9744119 245 0198374 9928572 293 0051426 9984111
196 0584409 9750021 246 0193563 9930531 296 0049929 9984618
197 0573038 9755808 247 0188850 9932443 297 .0048470 9985110
198 0561831 .9761482 248 0184233 9934309 298 .0047050 9985588
199 0530789 9767045 249 0179711 9936128 299 0043666 9936031
200 0539910 9772499 250 0175283 9937903 300 0044318 9986301
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TABLE I (Contd.)
T d(T) D(1) T (1) D(1) T (1) D(1)

301  .0043007 9986938 321 00230890 9993363 341 0011910 9996752
302 0041729 9987361 322 0022358 9993590 342 0011510 9996869
303 0040486 9987772 323 0021649 9993810 343 0011122 9996982
304 0039276 9988171 324 0020960 9994024 344 0010747 9997091
305 0038098 9988558 325 0020290 9994230 346 0010383 9997197
306 0036931 9988933 326 .0019641 9994420 346 0010030 9997299
3.07 0033836 9989297 327 0019010 9994623 347 .0009689 9997398
308 0034751 .9989650 328 0018397 9994810 348 .0009358 9997493
309 0033695 9989992 3290 0017803 9994991 349 0009037 9997585
310 0032668 9990324 330 0017226 9995166 350 .0008727 9997674
311 0031669 9990646 331 0016666 9995335 351 .0008436 9997759
312 0030698 9990957 332 0016122 9995499 352 0008135 9997842
313 .0029754 9992360 333 0015595 9995658 353 0007853 9997922
3.14 0028835 9991353 334 0015084 0993811 334 .0007381 9997999
315 0027943 9991836 335 0014387 9995939 3355 0007317 9998146
316 .0027075 9992112 336 0014106 9996103 356 0007001 9998146
317 0026231 9992378 337 0013639 9996242 357 0006814 9998146
318 0023412 9992636 338 0013187 9996376 338 .0006375 9998282
319 0024615 9992886 339 0012748 9996505 339 0006343 9998347
320 0023841 9993129 340 0012322 9996631 360 0006119 9998409

*Abridged from Table | of Biometrika Tables for Statisticians, vol. 1, with the kind
permission of the Biometrika Trustees.

TABLE 11
DISTRIBUTION OF STANDARD NORMAL VARIABLE
Values of T,

o 0.05 0.025 0.01 0.005
Ta 1.645 1.960 2.326 2.576
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TABLE III
x* — DISTRIBUTION*
2
VALUES OF 2 _
o[ 0995 099 0975 0.95 005 0025 001  0.005
v
1| 0000 0000 0001 0004 3841 5024 6635 7879
2| oolo 0020 0051 0103 5991 7378 0210  10.597
31 0072 0115 0216 0352 7815 9348 11345 12828
4| 0207 0297 0484 0711 9488 11143 13277  14.860
5| 0412 0554 0831 1145 11070 12832 15086  16.750
6| 0676 0872 1237 1635 12592 14449 16812  18.548
7| 098 1239 1690 2167 14067 16013 18475 20278
8| 1344 1646 2180 2733 15507 17535 20090  21.955
9 1735 2088 2700 3325 16919 19023 21666  23.589

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188

11 2.603 3.033 3816 4.375 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300
13 3.365 4.107 5.009 5892 22.362 24.736 27.688 29.819
14 4,075 4.660 5.629 6.571 23.685 26.119 29141 31.319
15 4.601 3.229 6.202 7.261 24.996 27488 30.578 32.801

16 5.142 5812 6.908 7.962 26.296 28.845 32.000 34.267
17 5697 6.408 7.504 8672 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156
19 6.844 7.833 8.907 10.117 30.144 32852 36.191 38.582
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11,591 32.671 35479 38.932 41.401
22 8.643 9.542 10.982 12,338 33.924 36.781 40.289 42.796
23 9.260 10.1%6 11.688 13.091 35172 38076 41.638 44.181
24 9.886 10.856 12.401 13.848 36.415 39.364 42980 45.558
25 10.520 11.524 13.120 14.611 37.652 40,646 44314 46.928

26 | 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290
27 | 11.808 12.879 14.573 16.151 40.113 43,194 46.963 49.645
28 | 12461 13.565 15.308 16,928 41.337 44 461 48.278 50.993
29 | 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52336
30| 13787 14.933 16.791 18.493 43.773 46.979 50.892 33072

40 | 20706 22.164 24.433 26.509 535.759 39.342 63.691 66.760
50 | 27991 29.707 32.357 34 704 67.503 71.420 76.134 79.490
60 | 35535 37.485 40.482 43.188 79.082 83.298 88.379 91.952
70 | 43273 45.442 48.758 51.739 90531 95023 100425 104215
80 | 51.172 53.540 57153 60.391 101.879 106.629 112.329 116321
90 | 39.196 61.734 65.647 69,126  113.145 118136 124116  128.299
100 | 67.328 70.065 74.222 77.929 124342 129.561 135807  140.169

For larger values of v, the quantity 252 —2v—1 may be used as a standard normal

variable,
*Abridged from Table 8 of Biometrika Tables for Statisticians, vol, I, with the kind
permission of the Biometrika Trustees.
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TABLE 1V
-DISTRIBUTION*
Values of 1, ,,
o 0.03 0.023 0.01 0.003
U

| 6314 12.706 31821 63.657
2 2920 4303 6.965 9925
3 2353 3182 4541 5.841
4 2132 2776 3747 4.604
5 2015 2571 3365 4.032
6 1943 2447 3.143 3.707
7 1.895 2365 2998 3499
8 1.860 2306 2.896 3335
9 1833 2262 2.821 3.250
10 1.812 2228 2764 3.169
11 1.796 2201 2718 3.106
12 1782 2179 2681 3.035
13 1.771 2.160 2650 3012
14 1.761 2,145 2624 2977
15 1.753 2131 2602 2947
16 1.746 2120 2.583 2921
17 1.740 2110 2567 2 898
18 1.734 2,101 2552 2878
19 1.729 2,003 2539 2861
20 1.725 2,086 2528 2 845
21 1.721 2,080 2518 2831
22 1.717 2,074 2508 2819
23 1.714 2,069 2500 2807
24 1.711 2,064 2492 2797
25 1.708 2,060 2485 2787
26 1.706 2,056 2479 2779
27 1.703 2,052 2473 277
28 1.701 2,048 2467 2763
29 1.699 2,045 2462 2756
30 1.697 2,042 2457 2750
40 1.684 2,021 2423 2704
60 1.671 2,000 2390 2660
120 1.658 1.980 2358 2617
o 1.645 1.960 2326 2.576

*Abridged from Table 1 of Biometrika Tables for Statisticians. vol. 1, with the kind
permission of the Biometrika Trustees.
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TABLE VI
THE DURBIN-WATSON d-STATISTIC
SIGNIFICANCE POINTS OF dr. AND dv : 5%
=1 k=2 K =73 =4 K =3
i dar du dy el dy du dar el dy du
15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 221
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 215
17 1.13 1.38 1.02 1.34 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 093 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.88 1.83 0.73 2.02
20 1.20 141 1.10 1.34 1.00 1.68 0.90 1.83 0.79 1.99
21 122 1.42 1.13 1.54 1.03 167 0.93 1.81 0.83 196
22 1.24 1.43 1.15 1.34 1.03 1.66 0.96 1.80 0.86 1.94
23 126 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 192
24 127 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
23 1.29 1.43 1.21 1.533 1.12 1.66 1.04 1.77 0.93 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.60 1.76 0.98 1.88
27 1.32 1.47 1.24 1.36 1.16 1.63 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.36 1.18 1.63 1.10 1.73 1.03 1.83
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.33 1.49 1.28 1.57 121 1.63 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 123 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 124 1.65 1.18 1.73 1.11 1.82
33 1.38 1.531 1.32 1.38 1.26 1.63 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 127 1.65 1.21 1.73 1.15 181
35 1.40 1.32 1.34 1.38 1.28 1.63 1.22 1.73 1.16 1.80
36 141 1.32 1.35 1.39 1.29 1.63 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 131 1.66 1.25 1.72 1.19 1.80
38 1.43 1.34 1.37 1.39 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 133 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
43 141 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 167 1.38 1.72 1.34 1.77
53 1.53 1.60 1.49 1.64 1.43 1.68 141 1.72 1.38 1.77
60 1.53 1.62 1.531 1.63 1.48 1.69 1.44 1.73 141 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.533 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.85 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
R0 161 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
83 1.62 1.67 1.60 1.70 1.57 1.72 1.533 1.73 1.32 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
93 1.64 1.69 1.62 1.71 1.60 1.73 1.38 1.73 1.36 1.78
100 1.65 1.69 1.63 1.72 1.61 1.74 1.39 1.76 1.57 1.78

Note : £© = Number of explanatory variables excluding the constant.
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